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Abstract
This paper contributes a formal framework for quantitative analysis

of bounded sensor attacks on cyber-physical systems, using the

formalism of differential dynamic logic. Given a precondition and

postcondition of a system, we formalize two quantitative safety no-

tions, quantitative forward and backward safety, which respectively

express (1) how strong the strongest postcondition of the system is

with respect to the specified postcondition, and (2) how strong the

specified precondition is with respect to the weakest precondition

of the system needed to ensure the specified postcondition holds.

We introduce two notions, forward and backward robustness, to

characterize the robustness of a system against sensor attacks as

the loss of safety. Two simulation distances, which respectively

characterize upper bounds of the degree of forward and backward

safety loss caused by the sensor attacks, are developed to reason

with robustness. We verify the two simulation distances by express-

ing them as formulas of differential dynamic logic, and proving the

formulas with existing tool support. We showcase an example of

an autonomous vehicle that needs to avoid a collision.

CCS Concepts: • Theory of computation → Logic and veri-
fication; • Security and privacy → Formal security models;
• Computer systems organization → Embedded and cyber-
physical systems.

Keywords: formal method, robustness, differential dynamic logic,

quantitative analysis
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1 Introduction
Cyber-physical systems (CPSs), which consist of both physical and

cyber components, suffer from a broad attack surface, including

both software controllers and physical components. A peculiar

class of attacks in such systems is the so-called physics-based at-

tacks: attacks targeting the physical devices (sensors and actuators)

of CPSs [17, 26]. For instance, sensor attacks, such as DoS or in-

tegrity attacks on sensors, may lead to crashing the system under

attack [41], or allow an adversary to control the system [8, 9].

The importance of ensuring the safety of CPSs motivates a grow-

ing body of work on formal verification for embedded and hybrid

systems [2, 4, 7, 22, 29, 30, 33, 34, 42, 44], some of which focus on

the analysis of sensor-related attacks [26, 27, 45]. Existing work

often treats satisfaction of safety as a boolean predicate: either a

system satisfies a desired safety property or it does not. However, a

simple yes/no answer doesn’t fit the setting of CPSs, which interact

with continuous and quantitative entities, such as measurements of

the controlled physical process. For example, under the same road

conditions, a vehicle with a shorter braking distance towards an

obstacle is considered safer than a vehicle with a longer braking

distance, even if both of them can brake in time. Thus, when work-

ing with CPSs, a quantitative notion of safety can be much more

informative than standard safety.

However, knowing the degree of safety of a correct CPS is not

enough to analyze the effect of attacks targeting its sensors. For

example, a vehicle with a very short braking distance may not

be able to tolerate certain attacks on the obstacle detection system,

resulting in unsafe runtime behaviors. Here, it is important to

understand the robustness of a system’s safety under sensor attacks,

that is, how the safety may change because of sensor attacks. For

example, consider a vehicle equipped with a self-braking system

whose safety requirement is to brake from the speed of 100 km/h

when an obstacle is detected 40 meters away. And suppose the

vehicle, at that speed, starts braking when the obstacle is detected

60 meters away. Assume that an adversary is able to perturb the

readings of the distance to an obstacle by 10 meters without being

detected. Then, the vehicle is still safe as it starts braking, at the

speed of 100 km/h, when the obstacle is 50 meters away; 10 meters

more than the safety requirements. The degree of safety loss is a

clear indicator of the vehicle’s robustness against such an attack.

In this work, we define two notions of quantitative safety for

CPSs and use them to analyze a system’s robustness under sensor

attacks. Our threat model assumes bounded sensor attacks, that is,

attacks that may compromise a subset of sensors and offset their
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readings to some degree. Using bounded sensor attacks, the attacker

may slowly drag the physical process of the target CPSs into unsafe

states, in a (possibly) stealthy manner, i.e., without being (promptly)

detected by Intrusion Detection Systems (IDSs). We do not model

or discover the mechanisms by which attackers manipulate sensor

values; we simply assume they are able to do so. We also assume

every system has a known precondition and postcondition. The pre-

condition specifies the initial conditions and environment when the

system starts operating, and the postcondition specifies the desired

condition that the system should always satisfy for it to be safe.

The first notion is forward quantitative safety, which estimates

the room for maneuver to ensure that the system remains safe after

any execution starting from a state satisfying the precondition. It

basically estimates how strong the strongest postcondition is with

respect to the desired safety postcondition. Said in other words,

given a precondition, forward safety provides a quantification of the

margins on possible strengthening of the safety postcondition with

respect to the strongest postcondition. Technically, it is defined

as the shortest distance between the set of states satisfying the

strongest postcondition and the set of unsafe states. The larger this

distance is, the further away the system’s reachable states are from

unsafe states, and thus the safer the system is. Built upon forward

safety, we introduce forward robustness, which characterizes the

impact of a sensor attack as a ratio: the degree of forward safety of

the compromised system over the degree of forward safety of the

original system. Intuitively, the closer the ratio gets to 1, the more

robust the original system is against the attack. A ratio of 1 means

the attack doesn’t weaken the safety guarantee at all.

The second notion is backward quantitative safety, which pro-

vides a degree of safety by estimating the room for maneuver to

ensure that the system remains safe with respect to a given post-

condition by weakening the precondition. It basically estimates

how strong the specified precondition is with respect to the weak-

est precondition needed to ensure the safety of the system after

its execution. Said in other words, given a safety postcondition,

backward safety provides a quantification of the precondition with

respect to the weakest precondition. Technically, it is defined as

the shortest distance between the set of states satisfying the weak-

est precondition and the set of “bad” initial states that may lead

the system to unsafe states. The larger this distance is, the further

away the system’s states that satisfy precondition are from “bad”

initial states, and thus the safer the system is. Built upon backward

safety, we introduce backward robustness that characterizes the

impact of a sensor attack as a ratio: the degree of backward safety

of the compromised system over the original system. Similar to

forward robustness, the closer the ratio gets to 1, the more robust

the original system is against the attack.

The two robustness notions together give system designers a

good way to understand and compare different design candidates by

focusing either on preconditions or on postconditions. For example,

if a system is likely to suffer from sensor attacks, a designer may

simply choose a candidate design with better degrees of robustness.

If one degree of robustness (e.g., forward robustness) is identical or

similar among different designs, the designers may use the other

(e.g., backward robustness) to compare the designs.

To reason about forward (and backward) robustness, we intro-

duce a forward (and backward) simulation distance to, respectively,

provide an upper bound of the degree of loss of forward (and back-

ward) safety caused by sensor attacks. The simulation distances are

defined based on the behavioral distances [16] between the original

system and the system with compromised sensors. In particular,

the forward simulation distance characterizes the forward distance

between the two systems by quantifying the distance between their

reachable states, given the same set of initial states. Thus, the for-

ward distance between the original and the compromised system

returns an upper bound on the admissible perturbations introduced

by a sensor attack on the safety of the behaviors originating from

a desired precondition. Analogously, the backward simulation dis-

tance characterizes the backward distance between the two systems

by quantifying the distance between their sets of safe initial states,

i.e., those states that never lead the system to an unsafe state, given

the same set of safe final states. Thus, the backward distance be-

tween the original and the compromised system returns an upper

bound on the admissible perturbations introduced by a sensor at-

tack on the initial states leading to possible violations of safety,

given a desired postcondition. We prove that the forward (and back-

ward) simulation distance represents a sound proof-technique for

calculating upper bounds of forward (and backward) robustness

as it returns upper bounds of the loss of forward (and backward)

safety caused by sensor attacks.

In the paper, we work within the formalism of hybrid programs

and differential dynamic logic (dL) [36–38]. Hybrid programs are a

formalism for modeling systems that have both continuous and dis-

crete dynamic behaviors. Hybrid programs can express continuous

evolution (as differential equations) as well as discrete transitions.

Differential dynamic logic is the dynamic logic of hybrid programs,

which is used to specify and verify safety properties.

To verify forward (and backward) simulations, we express them

as dL formulas and use the theorem prover developed for dL, KeY-

maera X [15], to verify the formulas. We present the two encodings

and showcase with examples.

The main contributions of this paper are the following:

• The notions of forward and backward quantitative safety in

the context of differential dynamic logic that models safety

properties of CPSs (Section 3).

• The notions of forward and backward quantitative robustness

for systems under bounded sensor attacks, defined using the

two notions of quantitative safety (Section 4).

• Two simulation distances, forward and backward simulation

distances over hybrid programs, to reason with robustness

(Section 5).

• dL encodings to express the two simulation relations so we

can verify them in KeYmaera X (Section 6).

We introduce preliminaries in Section 2. In Section 7, we demon-

strate all notions and techniques with a case study on collision

avoidance of autonomous vehicles. Section 8 discusses related work,

and Section 9 concludes.

2 Preliminaries
2.1 Differential Dynamic Logic
Hybrid programs [38] are a formalism for modeling systems that

have both continuous and discrete dynamic behaviors. Hybrid pro-

grams can express continuous evolution (as differential equations)

as well as discrete transitions.

Figure 1 gives the syntax for hybrid programs. Variables are

real-valued and can be deterministically assigned (𝑥 := 𝜃 , where

𝜃 is a real-valued term) or nondeterministically assigned (𝑥 := ∗).
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𝜃 , 𝛿 ::= 𝑥 | 𝑐 | 𝜃 ⊕ 𝛿

𝛼 , 𝛽 ::= 𝑥 := 𝜃 | 𝑥 := ∗ | 𝑥 ′ = 𝜃 &𝜙 | ?𝜙 | 𝛼 ; 𝛽 | 𝛼 ∪ 𝛽 | 𝛼∗
𝜙 ,𝜓 ::= ⊥ | 𝜃 ∼ 𝛿 | ¬𝜙 | 𝜙 ∧𝜓 | ∀𝑥 . 𝜙 | [𝛼]𝜙

Figure 1. Syntax of hybrid programs and dL
Term semantics

𝜔⟦𝑥⟧ = 𝜔 (𝑥 )
𝜔⟦𝑐⟧ = 𝑐

𝜔⟦𝜃 ⊕ 𝛿⟧ = 𝜔⟦𝜃⟧ ⊕ 𝜔⟦𝛿⟧ where ⊕ denotes corresponding

arithmetic operations for ⊕ ∈ {+, ×}
Program semantics

⟦𝑥 := 𝜃⟧ = { (𝜔, 𝜈 ) | 𝜈 (𝑥 ) = 𝜔⟦𝜃⟧ and for all other

variables 𝑧 ≠ 𝑥 , 𝜈 (𝑧 ) = 𝜔 (𝑧 ) }
⟦𝑥 := ∗⟧ = { (𝜔, 𝜈 ) | 𝜈 (𝑧 ) = 𝜔 (𝑧 ) for all variables 𝑧 ≠ 𝑥 }

⟦𝑥 ′ = 𝜃 &𝜙⟧ = { (𝜔, 𝜈 ) | exists solution 𝜑 : [0, 𝑟 ] ↦→ Sta of

𝑥 ′ = 𝜃 with 𝜑 (0) = 𝜔 and 𝜑 (𝑟 ) = 𝜈 ,

and 𝜑 (𝑡 ) |= 𝜙 for all 𝑡 ∈ [0, 𝑟 ] }
⟦?𝜙⟧ = { (𝜔,𝜔 ) | 𝜔 |= 𝜙 }

⟦𝛼 ; 𝛽⟧ = { (𝜔, 𝜈 ) | ∃𝜇, (𝜔, 𝜇 ) ∈ ⟦𝛼⟧ and (𝜇, 𝜈 ) ∈ ⟦𝛽⟧}
⟦𝛼 ∪ 𝛽⟧ = ⟦𝛼⟧ ∪ ⟦𝛽⟧

⟦𝛼∗⟧ = ⟦𝛼⟧∗, the transitive, reflexive closure of ⟦𝛼⟧
Formula semantics

⟦⊥⟧ = ∅
⟦𝜃 ∼ 𝛿⟧ = { 𝜔 | 𝜔⟦𝜃⟧ ∼ 𝜔⟦𝛿⟧ }, where ∼ denotes

comparison for ∼ ∈ {=, ≤,<, ≥,>}
⟦¬𝜙⟧ = Sta \ ⟦𝜙⟧

⟦𝜙 ∧𝜓⟧ = ⟦𝜙⟧ ∪ ⟦𝜓⟧
⟦∀𝑥. 𝜙⟧ = ⟦[𝑥 := ∗]𝜙⟧
⟦[𝛼 ]𝜙⟧ = { 𝜔 | ∀𝜈 if (𝜔, 𝜈 ) ∈ ⟦𝛼⟧ then 𝜈 ∈ ⟦𝜙⟧}

Figure 2. Semantics of hybrid programs and dL formulas

Hybrid program 𝑥 ′ = 𝜃 &𝜙 expresses the continuous evolution of

variables: given the current value of variable 𝑥 , the system follows

the differential equation 𝑥 ′ = 𝜃 for some (nondeterministically cho-

sen) amount of time so long as the formula 𝜙 , the evolution domain

constraint, holds for all of that time. Note that 𝑥 can be a vector of

variables and then 𝜃 is a vector of terms of the same dimension.

Hybrid programs also include the operations of Kleene algebra

with tests [23]: sequential composition, nondeterministic choice,

nondeterministic repetition, and testing whether a formula holds.

Differential dynamic logic (dL) [36–38] is the dynamic logic [18]

of hybrid programs. Figure 1 also gives the syntax for dL formulas.

In addition to the standard logical connectives of first-order logic,

dL includes primitive propositions that allow comparisons of real-

valued terms (which may include derivatives) and program necessity

[𝛼]𝜙 , which holds in a state if and only if after any possible execu-

tion of hybrid program 𝛼 , formula 𝜙 holds. Modality of necessity

can be used to encode modality of existence, i.e., ⟨𝛼⟩𝜙 = ¬[𝛼]¬𝜙 .
Common abbreviations for other logical connectives apply, e.g.,

𝜙 ∨𝜓 = ¬(¬𝜙 ∧ ¬𝜓 ) and 𝜙 →𝜓 = ¬𝜙 ∨𝜓 .

The semantics of dL [36, 37] is a Kripke semantics in which the

Kripke model’s worlds are the states of the system. Let R denote

the set of real numbers and V denote the set of variables. A state is

a map𝜔 :V ↦→ R assigning a real value𝜔 (𝑥) to each variable 𝑥 ∈ V.
The set of all states is denoted by Sta. The semantics of hybrid

programs and dL are shown in Figure 2. We write ⟦𝜙⟧ to denote

the set of states that satisfy formula 𝜙 . The value of term 𝜃 at state

𝜔 is denoted 𝜔⟦𝜃⟧. The semantics of a program 𝛼 is expressed as a

transition relation ⟦𝛼⟧ between states. If (𝜔, 𝜈) ∈ ⟦𝛼⟧ then there

is an execution of 𝛼 that starts in state 𝜔 and ends in state 𝜈 .

Safety properties of a system are often defined as follows:

𝜙𝑝𝑟𝑒 ≡ 𝑡𝑒𝑚𝑝 = 100

𝜙𝑝𝑜𝑠𝑡 ≡ 𝑡𝑒𝑚𝑝 ≤ 105

𝑐𝑡𝑟𝑙 ≡ 𝑡 := 0 ;

(?𝑡𝑒𝑚𝑝 > 100 ; 𝑑𝑒𝑙𝑡𝑎 := −0.5 );
∪ (?𝑡𝑒𝑚𝑝 ≤ 100 ; 𝑑𝑒𝑙𝑡𝑎 := 1) ;

𝑝𝑙𝑎𝑛𝑡 ≡ 𝑡𝑒𝑚𝑝′ = 𝑑𝑒𝑙𝑡𝑎, 𝑡 ′ = 1&(𝑡𝑒𝑚𝑝 ≥ 0 ∧ 𝑡 ≤ 1)
𝜙𝑠𝑎𝑓 𝑒𝑡𝑦 ≡ 𝜙𝑝𝑟𝑒 → [(𝑐𝑡𝑟𝑙 ; 𝑝𝑙𝑎𝑛𝑡)∗]𝜙𝑝𝑜𝑠𝑡

Figure 3. dL model of a cooling system

...

𝑐𝑡𝑟𝑙 ≡ 𝑡𝑒𝑚𝑝𝑠 := 𝑡𝑒𝑚𝑝𝑝 ; 𝑡 := 0 ;

(?𝑡𝑒𝑚𝑝𝑠 > 100 ; 𝑑𝑒𝑙𝑡𝑎 := −0.5 );
∪ (?𝑡𝑒𝑚𝑝𝑠 ≤ 100 ; 𝑑𝑒𝑙𝑡𝑎 := 1) ;

𝑝𝑙𝑎𝑛𝑡 ≡ 𝑡𝑒𝑚𝑝𝑝
′ = 𝑑𝑒𝑙𝑡𝑎, 𝑡 ′ = 1&(𝑡𝑒𝑚𝑝𝑝 ≥ 0 ∧ 𝑡 ≤ 1)

Figure 4. dL model of a cooling system with sensing

Definition 1 (Safety). A hybrid program 𝛼 is safe for 𝜙𝑝𝑜𝑠𝑡 assum-

ing 𝜙𝑝𝑟𝑒 , denoted safe(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), if 𝜙𝑝𝑟𝑒 → [𝛼]𝜙𝑝𝑜𝑠𝑡 holds.

safe(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) means if 𝜙𝑝𝑟𝑒 is true then 𝜙𝑝𝑜𝑠𝑡 holds after

any possible execution of 𝛼 . The hybrid program 𝛼 often has the

form (𝑐𝑡𝑟𝑙 ; 𝑝𝑙𝑎𝑛𝑡)∗, where 𝑐𝑡𝑟𝑙 models atomic actions of the control

system and does not contain continuous parts (i.e., differential

equations); and 𝑝𝑙𝑎𝑛𝑡 models evolution of the physical environment

and has the form of 𝑥 ′ = 𝜃 &𝜙 . That is, the system is modeled as

unbounded repetitions of a controller action followed by an update

to the physical environment.

For example, consider a simple cooling system that operates in an

environment where temperature grows at the rate of 1 degree per

minute, shown in Figure 3. Let 𝑡𝑒𝑚𝑝 be the current temperature of

the environment in degrees. The safety condition that we would like

to enforce (𝜙𝑝𝑜𝑠𝑡 ) is that 𝑡𝑒𝑚𝑝 is no greater than 105 degrees. Let

𝑑𝑒𝑙𝑡𝑎 be the rate of change of the temperature (degrees per minute).

Let 𝑡 be the time elapsed since the controller was last invoked. The

program 𝑝𝑙𝑎𝑛𝑡 describes how the physical environment evolves

over time interval (1 second): temperature changes according to

𝑑𝑒𝑙𝑡𝑎 (i.e., 𝑡𝑒𝑚𝑝′ = 𝑑𝑒𝑙𝑡𝑎) and time passes constantly (i.e., 𝑡 ′ = 1).

The differential equations evolve only within the time interval 𝑡 ≤ 1

and if 𝑡𝑒𝑚𝑝 is non-negative (i.e., 𝑡𝑒𝑚𝑝 ≥ 0).

The hybrid program 𝑐𝑡𝑟𝑙 models the system’s controller. If the

temperature is above 100 degrees, the system activates cooling and

the temperature drops at a rate of 0.5 degrees per time unit (i.e.,

𝑑𝑒𝑙𝑡𝑎 := −0.5). The controller doesn’t activate cooling under other

temperatures. Then the temperature would grow at the rate of 1

degree per minute (i.e., 𝑑𝑒𝑙𝑡𝑎 := 1).

The formula to be verified, 𝜙𝑠𝑎𝑓 𝑒𝑡𝑦 , is shown at the last line of

Figure 3. Given an appropriate precondition 𝜙𝑝𝑟𝑒 , the axioms and

proof rules of dL can be used to prove that the safety condition

𝜙𝑝𝑜𝑠𝑡 holds. For this model, assuming the precondition of initial

temperature of 100 degrees, i.e.,𝜙𝑝𝑟𝑒 , we want to ensure the temper-

ature stays no greater than 105 degrees, i.e., 𝜙𝑝𝑜𝑠𝑡 . The tactic-based

theorem prover KeYmaera X [15] provides tool support.

To present some of our definitions, we need to refer to the vari-

ables that occur in a hybrid program [37, 38]. We write Var(𝛼) and
Var(𝜙) to denote, respectively, the set of all variables of program

𝛼 and formula 𝜙 . Their definitions can be found in Appendix A.
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2.2 Modeling Sensor Attacks
Recent work introduces a framework for modeling and analyzing

sensor attacks in the setting of hybrid programs and dL [45]. It

models sensing by separately representing physical values and their

sensor reads, and then requires that variables holding sensor reads

are equal to the underlying sensor’s value. See, for instance, Figure 3

and Figure 4. Here, 𝑡𝑒𝑚𝑝𝑝 represents the actual physical temper-

ature and it changes according to 𝑑𝑒𝑙𝑡𝑎, while 𝑡𝑒𝑚𝑝𝑠 represents

the variable into which the sensor’s value is read. The controller

program 𝑐𝑡𝑟𝑙 sets the sensed values equal to the physical values,

i.e., 𝑡𝑒𝑚𝑝𝑠 := 𝑡𝑒𝑚𝑝𝑝 , to indicate the sensor is working correctly.

Models of a system under sensor attack can be then derived by

manipulating the variables representing the sensor reads. For exam-

ple, with the model shown in Figure 4, an attack on the temperature

sensor can be modeled by replacing the constraint 𝑡𝑒𝑚𝑝𝑠 = 𝑡𝑒𝑚𝑝𝑝
with 𝑡𝑒𝑚𝑝𝑠 := ∗, allowing 𝑡𝑒𝑚𝑝𝑠 to take arbitrary values.

We later extend this approach to model bounded sensor attacks.

2.3 Distance Metrics
To conduct quantitative analysis, we define a notion of distance

between states, using the Euclidean distance 𝜌 : Sta × Sta → R:

𝜌 (𝜔, 𝜈) =
√︄∑︁

𝑥∈V
(𝜔 (𝑥) − 𝜈 (𝑥))2

Notice that 𝜌 is a metric, namely, it satisfies the following prop-

erties: (1) 𝜌 (𝜔, 𝜈) = 0 if and only if 𝜔 = 𝜈 , (2) 𝜌 (𝜔, 𝜈) = 𝜌 (𝜈, 𝜔), and
(3) 𝜌 (𝜔, 𝜈) ≤ 𝜌 (𝜔, 𝜇) + 𝜌 (𝜇, 𝜈) for 𝜔, 𝜈, 𝜇 ∈ Sta.

For a state 𝜔 and a real 𝜖 > 0, the ball of ray 𝜖 centered in 𝜔 is

the set of states B(𝜔, 𝜖) = {𝜈 |𝜌 (𝜔, 𝜈) ≤ 𝜖}.
We adopt existing notions [6, 11] to specify the distance between

a state and a set of states:

• The distance between a state 𝜔 and a set of states S ⊆ Sta

is the shortest distance between 𝜔 and all states in S, that is,
dist(𝜔,S) = inf{𝜌 (𝜔, 𝜈) |𝜈 ∈ S}

• The depth of 𝜔 in S ⊆ Sta is the shortest distance between 𝜔

and the boundary of S, that is, depth(𝜔,S) = inf{𝜌 (𝜔, 𝜈) |𝜈 ∈
(Sta \ S)}

• The signed distance between 𝜔 and a set of states S ⊆ Sta is

defined as follows:

Dist(𝜔,S) =
{
depth(𝜔,S), if 𝜔 ∈ S
−dist(𝜔,S), if 𝜔 ∉ S

Note that in the first case the distance is a positive real num-

ber, while in the second case the distance is negative. Thus,

Dist(𝜔,S) > 0 implies that B(𝜔, 𝜖) ⊆ S for all 𝜖 < Dist(𝜔,S),
whereas Dist(𝜔,S) < 0 implies that B(𝜔, 𝜖) ⊆ (Sta \ S) for
all 𝜖 < −Dist(𝜔,S). Dist(𝜔,S) = 0 is not very informative.

In all these definitions, we assume that inf ∅ = ∞ and inf R =

−∞. And we consider the operator inf in the set of R ∪ {∞,−∞},
therefore every set has an infimum.

3 Quantitative Safety
The Boolean notion of safety in dL, e.g., safe(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), does
not provide any quantitative information on how “good” (i.e., safe)

the system is. In this section, we introduce two quantitative no-

tions of safety. The two notions are the foundation of defining

forward and backward robustness. They are, respectively, built on

the strongest postcondition and weakest precondition in the setting

of dL. In defining quantitative safety, we use hybrid program 𝛼 to

model a system of interest, formula 𝜙𝑝𝑟𝑒 as the precondition of the

system, and 𝜙𝑝𝑜𝑠𝑡 as the postcondition.

3.1 Extended dL
To help define quantitative safety, we extend dL with another syn-

tactic structure: 𝜙 ⟨𝛼⟩, which intuitively represents the strongest

postcondition after the execution of the program 𝛼 in a state satis-

fying the precondition 𝜙 . Its formal definition is the following:

⟦𝜙 ⟨𝛼⟩⟧ = { 𝜈 | ∃𝜔 such that 𝜔 ∈ ⟦𝜙⟧ and (𝜔, 𝜈) ∈ ⟦𝛼⟧}
Its dual is the modality of necessity [𝛼]𝜙 , which represents the

weakest precondition to ensure that 𝜙 is satisfied after any execution

of program 𝛼 . Its formal definition is shown above in Figure 2.

3.2 Forward Quantitative Safety
A quantitative variation to the Boolean notion of safety, e.g.,

safe(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), is forward quantitative safety, which provides

a degree of safety by estimating the room of maneuver to ensure

that the system remains in the safety region after any admissible

execution. It basically estimates how strong the strongest post-

condition 𝜙𝑝𝑟𝑒 ⟨𝛼⟩ (obtained by the execution of program 𝛼 in the

precondition 𝜙𝑝𝑟𝑒 ) is with respect to the postcondition 𝜙𝑝𝑜𝑠𝑡 . In

other words, this degree of safety gives an indication of the margins

on possible strengthening of the postcondition 𝜙𝑝𝑜𝑠𝑡 .

Definition 2 (Forward quantitative safety). Given a real 𝑢 ∈ R
and formula 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , a hybrid program 𝛼 is forward 𝑢-

safe for 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , denoted F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), if 𝑢 =

inf{Dist(𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧) | 𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨𝛼⟩⟧}.

Given a system 𝛼 and a precondition 𝜙𝑝𝑟𝑒 , the real number 𝑢

measures the shortest distance between the set of states satisfying

the strongest postcondition 𝜙𝑝𝑟𝑒 ⟨𝛼⟩ and the set of unsafe states. If

𝑢 is positive, then all reachable states by the system 𝛼 from initial

states satisfying the precondition 𝜙𝑝𝑟𝑒 stay safe. The bigger 𝑢 is,

the safer the system is. On the contrary, if 𝑢 is negative, then some

reachable states violate the safety condition 𝜙𝑝𝑜𝑠𝑡 . If 𝑢 is 0, then

the system cannot be considered safe as its safety may depend on

very small perturbations of the system’s variables [11].

For example, consider the cooling system shown in Figure 4,

assuming the precondition 𝜙𝑝𝑟𝑒 , during the execution of the system

the temperature lays in the real interval (99.5, 101]. Then, we have
F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), where 𝛼 = (𝑐𝑡𝑟𝑙 ; 𝑝𝑙𝑎𝑛𝑡)∗ for 𝑢 = 4. So, 𝑢

is our “degree of safety” w.r.t. 𝜙𝑝𝑜𝑠𝑡 : the system will always satisfy

the postcondition 𝑡𝑒𝑚𝑝𝑝 ≤ 105 with a margin of at least 4 degrees.

Suppose we have a different postcondition 𝜙 ′𝑝𝑜𝑠𝑡 ≡ 𝑡𝑒𝑚𝑝𝑝 <= 101.

In this case, we have F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙 ′𝑝𝑜𝑠𝑡 ), for 𝑢 = 0, and the

system is actually safe, as safe(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙 ′𝑝𝑜𝑠𝑡 ) holds. However, for a
slightly different postcondition 𝜙 ′′𝑝𝑜𝑠𝑡 ≡ 𝑡𝑒𝑚𝑝𝑝 < 101, we still have

F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙 ′′𝑝𝑜𝑠𝑡 ), for𝑢 = 0, but the system is actually unsafe,

as safe(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙 ′′𝑝𝑜𝑠𝑡 ) is false. This shows that when the degree of

safety is 0 we cannot assess the safety of the system.

3.3 Backward Quantitative Safety
Another quantitative safety notion is backward quantitative safety,

which estimates how strong the precondition is with respect to

the required initial condition for the system to be safe. It provides

quantitative information on how “good” (i.e., strong) the precon-

dition 𝜙𝑝𝑟𝑒 is with respect to the weakest precondition [𝛼]𝜙𝑝𝑜𝑠𝑡 ,
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while ensuring safety (i.e., 𝜙𝑝𝑜𝑠𝑡 ) after executions of the system 𝛼 .

In other words, this degree of safety gives an indication of the

margins on a possible weakening of the precondition 𝜙𝑝𝑟𝑒 . It is

defined as the shortest of all distances from states that satisfy the

precondition to any “bad” initial states that can lead the system to

unsafe states.

Definition 3 (Backward quantitative safety). Given a real 𝑟 ∈
R and formula 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , a hybrid program 𝛼 is backward

𝑟 -safe for 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , denoted B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), if 𝑟 =

inf{Dist(𝜔, ⟦[𝛼]𝜙𝑝𝑜𝑠𝑡⟧) | 𝜔 ∈ ⟦𝜙𝑝𝑟𝑒⟧}.
Here, if 𝑟 is positive then any execution of the system that starts

from initial states in 𝜙𝑝𝑟𝑒 shall always stay safe. The bigger 𝑟 is,

the safer the system is. On the contrary, if 𝑟 is negative, then some

initial states in 𝜙𝑝𝑟𝑒 can lead the system’s execution to an unsafe

state. Similar to the forward quantitative safety, if 𝑟 is 0 the system

cannot be considered safe.

For example, assuming the precondition (𝑡𝑒𝑚𝑝𝑝 = 100) and the

postcondition (𝑡𝑒𝑚𝑝𝑝 <= 105), we have B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ),
for 𝑟 = 5, since the weakest precondition is 𝑡𝑒𝑚𝑝𝑝 <= 105. Then

𝑟 = 5 is our “degree of safety” w.r.t. 𝜙𝑝𝑟𝑒 : we have a room of ma-

neuver of 5 on the precondition to ensure the postcondition after

the execution of 𝛼 .

The Boolean version of safety, safe(𝛼 , 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) of Defini-

tion 1, can be expressed in terms of backward quantitative safety.

Proposition 1. Given a program 𝛼 and formula 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 .

• If there is 𝑟 > 0 such that B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), then
safe(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ).

• If safe(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) then there is 𝑟 ≥ 0 such that

B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ).
Note that the two quantitative notions of safety never contradict

each other, i.e., if one degree of safety is positive, the other is non-

negative. And if one degree is negative, the other is non-positive.

So the following proposition holds:

Proposition 2.
• If F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for some 𝑢 > 0, then

B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for some 𝑟 ≥ 0;

• If B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for some 𝑟 > 0, then

F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for some 𝑢 ≥ 0.

However, the degree of safety of the two notions are not quantita-

tively related, i.e., given formula 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 , and a hybrid program

𝛼 , if B-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) and F-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for some

𝑢 > 0 and 𝑟 > 0, the relationship between 𝑢 and 𝑟 can be arbitrary.

Note that given a system 𝛼 , formula 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , forward

quantitative safety, i.e., F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) always holds for
some 𝑢, since the infimum always exists (even for unsafe systems

whose 𝑢 is non-positive). The same for backward safety.

The definitions of forward and backward safety build on the

notion of weakest precondition and strongest postcondition. Ex-

isting work has introduced techniques to analyze them for hybrid

programs [13, 21]. In this work, we focus on systems where we can

compute the two conditions, without showing details of how we

compute them.

4 Quantitative Robustness
In this section, we introduce the threat model, bounded sensor

attacks, and two notions of robustness, developed using the two

notions of quantitative safety.

𝑐𝑡𝑟𝑙 ′ ≡ 𝑡𝑒𝑚𝑝𝑠 := ∗;
?(𝑡𝑒𝑚𝑝𝑠 ≥ 𝑡𝑒𝑚𝑝𝑝 − 0.3 ∧ 𝑡𝑒𝑚𝑝𝑠 ≤ 𝑡𝑒𝑚𝑝𝑝 + 0.3);

· · ·
Figure 5. dL model of a cooling system under sensor attack (the

omitted part of the model is the same as the model in Figure 4)

4.1 Bounded Sensor Attacks
Existing work [45] considers a threat model of sensor attacks that

the attackers can arbitrarily manipulate the sensor readings, e.g.,

compromised temperature sensor is modeled by 𝑡𝑒𝑚𝑝𝑠 := ∗. The
threat model is too coarse and strong, in particular, when the sys-

tem under attacks is equipped with some sort of IDS (for instance,

anomaly detection IDSs [17]) that the attacker would like to evade.

In this work, we consider more refined sensor attacks in which

the measurement deviation is bounded. Such finer attacks can be

modeled by assignments of the form 𝑞𝑠 = 𝑞𝑝 + 𝑜 , where 𝑞𝑠 and 𝑞𝑝
respectively represent sensor and physical value of a real-world

quantity, and 𝑜 represents a suitable offset. The idea being that for

low values of |𝑜 | the attack may remain stealthy, i.e., undetected by

IDSs. The attack can be formalized as follows:

Definition 4 (Bounded 𝑆𝐴-sensor attack). Given a hybrid program

𝛼 , a set of sensors 𝑆𝐴 ⊆ Var(𝛼) and an offset function 𝑜 : 𝑆𝐴 →
R≥0, we write attacked(𝛼, 𝑆𝐴, 𝑜) to denote the program obtained by

replacing in 𝛼 all assignments to variables 𝑞𝑠 in 𝑆𝐴 , with programs

of the form 𝑞𝑠 := ∗; ?(𝑞𝑠 ≥ 𝑞𝑝 − 𝑜 (𝑞𝑠 ) ∧ 𝑞𝑠 ≤ 𝑞𝑝 + 𝑜 (𝑞𝑠 )).

For example, for the cooling system shown in Figure 4, consider

a sensor attack introducing an offset 0.3 to the temperature sensor.

Figure 5 shows a model of the system with compromised sensors.

The following theorem states that forward safety is affected by

bounded sensor attacks in proportional manner: the stronger the

attack is, the lower the degree of safety the attacked system has.

Theorem 1. Assume a hybrid program 𝛼 , a set of sensors 𝑆𝐴 ⊆
Var(𝛼) and two offset functions 𝑜1 : 𝑆𝐴 → R≥0 and 𝑜2 : 𝑆𝐴 → R≥0,
with 𝑜1 (𝑠) ≤ 𝑜2 (𝑠) for any 𝑠 ∈ 𝑆𝐴 , real numbers 𝑢,𝑢1, 𝑢2 ∈ R, and
properties 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 . Then, if

• F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )
• F-safe𝑢1

(attacked(𝛼, 𝑆𝐴, 𝑜1), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )
• F-safe𝑢2

(attacked(𝛼, 𝑆𝐴, 𝑜2), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )
then 𝑢2 ≤ 𝑢1 ≤ 𝑢.

Intuitively, the theorem holds because the behaviors of a system

under a stronger attack subsumes a system under a weaker attack

or no attack. The detailed proof can be found in Appendix B.

We can prove a similar theorem for backward safety:

Theorem 2. Assume a hybrid program 𝛼 , a set of sensors 𝑆𝐴 ⊆
Var(𝛼) and two offset functions 𝑜1 : 𝑆𝐴 → R≥0 and 𝑜2 : 𝑆𝐴 → R≥0,
with 𝑜1 (𝑠) ≤ 𝑜2 (𝑠) for any 𝑠 ∈ 𝑆𝐴 , real numbers 𝑟, 𝑟1, 𝑟2 ∈ R, and
properties 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 . Then, if

• B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )
• B-safe𝑟1 (attacked(𝛼, 𝑆𝐴, 𝑜1), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )
• B-safe𝑟2 (attacked(𝛼, 𝑆𝐴, 𝑜2), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )

then 𝑟2 ≤ 𝑟1 ≤ 𝑟 .

4.2 Quantitative Robustness
With the definitions of quantitative safety, we can characterize the

robustness of a system against sensor attacks as the loss of safety.

In particular, the robustness notions are defined by comparing the
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degree of safety of the original system and the systemwhose sensors

have been compromised. We introduce two notions of quantitative

robustness, forward and backward robustness, which are built on

the notions of forward and backward safety, respectively.

Forward Robustness. The first robustness notion, forward ro-
bustness, measures, intuitively, how much an attack affects the

system’s reachable states if the system starts with the expected

precondition. Forward robustness characterizes the impact of a

sensor attack as a ratio: the degree of safety of the compromised

system over the degree of safety of the original system.

Definition 5 (Quantitative forward robustness). Given a hybrid

program 𝛼 , a set of sensors 𝑆𝐴 ⊆ Var(𝛼), an offset function 𝑜 : 𝑆𝐴 →
R≥0, real numbers 𝑢,𝑢1, 𝛿 ∈ R, and properties 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , we

say that 𝛼 is forward 𝛿-robust under 𝑜-bounded 𝑆𝐴-attacks, written

F-robust(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 , 𝑆𝐴, 𝑜, 𝛿), if
• F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), with 𝑢 > 0

• F-safe𝑢1
(attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )

• 𝛿 = 𝑢1/𝑢.

As expected, forward robustness applies only to systems that

are safe when not exposed to sensor attacks, i.e., 𝑢 > 0. The value

of ratio 𝛿 indicates the system’s robustness under the sensor attack.

Note that by Theorem 1, we know that 𝑢1 ≤ 𝑢. We can analyze 𝛿

by the following cases:

• 𝛿 = 1: the attack doesn’t affect the system’s forward safety.

• 0 < 𝛿 < 1: then 0 < 𝑢1 < 𝑢. Given initial states where the

precondition holds, reachable states of both the original system

and the compromised system stay safe. The value of (1 − 𝛿)

quantifies the percentage of forward safety that is lost due to

the attack. The closer 𝛿 is to 1, the more robust the system is.

• 𝛿 ≤ 0: then𝑢 > 0 and𝑢1 ≤ 0. Executions of the original system

stay safe, but the attack may be able to “break” the system:

some of its executions under attack may run into unsafe states.

The lower the value of 𝛿 , the more effective the attack can be.

Even in the case of 𝑢1 = 0 (𝛿 = 0), the compromised system

can no longer be considered safe.

Consider again the example of the cooling system. We know

that F-safe4 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for 𝜙𝑝𝑟𝑒 ≡ 𝑡𝑒𝑚𝑝𝑝 = 100 and 𝜙𝑝𝑜𝑠𝑡 ≡
𝑡𝑒𝑚𝑝𝑝 ≤ 105, where 𝛼 models the original system. For the compro-

mised system shown in Figure 5, starting again from𝜙𝑝𝑟𝑒 , during ex-

ecutions of attacked(𝛼, 𝑆𝐴, 𝑜), the temperature lies in (99.2, 101.3].
Thuswe know that F-safe3.7 (attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ). The
degree of forward robustness of the original system with respect

to the attack is: 𝛿 = 3.7/4 = 0.925.

The value of 𝛿 can help engineers evaluate or compare different

defense mechanisms against potential attacks. For a specific set of

attacks, a mechanism with less safety loss, i.e., bigger 𝛿 , may be

considered better than another one with more safety loss.

Note that using a ratio for 𝛿 is a better indicator of robustness

than using an absolute value, e.g., 𝑢 −𝑢1: it is consistent regardless

of the units of measurement used for safety. For example, the ratio

of robustness for a braking system w.r.t. a sensor attack would be

the same whether the safety is measured in feet or in meters.

Backward Robustness. The second robustness notion, back-

ward robustness, measures, intuitively, how resilient the initial states

that satisfy the precondition are to sensor attacks whose goal is to

drag the system into unsafe states. It characterizes the impact of a

sensor attack as a ratio: the degree of safety of the compromised

system over the degree of safety of the original system.

Definition 6 (Quantitative backward robustness). Given a hybrid

program 𝛼 , a set of sensors 𝑆𝐴 ⊆ Var(𝛼), an offset function 𝑜 : 𝑆𝐴 →
R≥0, real numbers 𝑟, 𝑟1, 𝛿 ∈ R, and properties 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , we say
that 𝛼 is backward 𝛿-robust under 𝑜-bounded 𝑆𝐴-attacks, written

B-robust(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 , 𝑆𝐴, 𝑜, 𝛿), if
• B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), with 𝑟 > 0

• B-safe𝑟1 (attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )
• 𝛿 = 𝑟1/𝑟 .
Again, backward robustness applies only to systems that are safe

when not exposed to sensor attacks (i.e., 𝑟 > 0). We can also analyze

𝛿 by the following cases. By Theorem 2, we know that 𝑟1 ≤ 𝑟 .

• 𝛿 = 1: the attack doesn’t affect the system’s backward safety.

• 0 < 𝛿 < 1: then 0 < 𝑟1 < 𝑟 . Executions of either 𝛼 or

attacked(𝛼, 𝑆𝐴, 𝑜) from initial states in ⟦𝜙𝑝𝑟𝑒⟧ won’t violate

the postcondition. The value of (1−𝛿) quantifies the percentage

of backward safety that is lost due to the attack. The close 𝛿 is

to 1, the more robust the system is.

• 𝛿 ≤ 0: then 𝑟 > 0 and 𝑟1 ≤ 0. The system is unsafe due to the

attack. Some initial states where the precondition holds can

lead the system to unsafe states, if the system is under attack.

The lower the value of 𝛿 , the more effective the attack can be.

In the case of 𝑟1 = 0 (i.e., 𝛿 = 0), the compromised system can

no longer be considered safe.

For example, consider again the cooling system example. Given

𝜙𝑝𝑟𝑒 ≡ 𝑡𝑒𝑚𝑝𝑝 = 100 and 𝜙𝑝𝑜𝑠𝑡 ≡ 𝑡𝑒𝑚𝑝𝑝 ≤ 105, we already know

that B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), where 𝛼 models the original system,

for 𝑟 = 5.0. Consider a sensor attack that offset 0.3 degree of sensor

readings, formula [attacked(𝛼, 𝑆𝐴, 𝑜)]𝜙𝑝𝑜𝑠𝑡 is 𝑡𝑒𝑚𝑝𝑝 ≤ 105.0. So

we know B-safe𝑟1 (attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for 𝑟1 = 5.0.

Therefore, the degree of backward robustness of the original system

w.r.t. the attack is: 𝛿 = 5.0/5.0 = 1. Meaning the attack doesn’t affect

the backward safety of the system.

5 Reasoning about Quantitative Robustness
Using Definition 5 (and 6), we can compute forward (and backward)

robustness of a system in terms of the forward (and backward)

safety of the system, before and after a bounded sensor attack.

However, the computation of forward and backward safety may be

difficult, as they consider all admissible values to compute the infi-

mum. This is particularly difficult for a system with compromised

sensors, due to the complications caused by the offset function.

In this section, we introduce two simulation distances between

hybrid programs, called forward simulation distance (or forward

distance) and backward simulation distance (or backward distance).

They quantify the behavioral distance between the original system

and the compromised one, according to a forward and backward

flavor, respectively. These distances allow us to compute an upper

bound of the loss of forward (and backward) safety. The computed

upper bounds are not necessarily tight bounds, but they are easier

to reason with and can be verified with existing tools.

To define forward (and backward) simulation distance between

two programs, we extend the notion of distance between states, i.e.,

𝜌 (𝜔, 𝜈), to support computing distance on a setH of variables [45].

Intuitively, variables in H are the ones that are relevant to the

specified precondition and postcondition. And thus computing

distance over these variables give us the quantitative distance of
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interest. Consider the cooling system example, we are interested

in the behavioral distance between the original program and the

compromised one w.r.t. the variable 𝑡𝑒𝑚𝑝𝑝 , rather than 𝑡𝑒𝑚𝑝𝑠 .

We introduce a new notion of distance between states w.r.t. a

set H of variables, as follows:

Definition 7. For a set of variablesH ⊆ V, two states𝜔 and 𝜈 are at

H-distance 𝑑 , written 𝜌H (𝜔, 𝜈) = 𝑑 , if

√︃∑
𝑥∈H (𝜔 (𝑥) − 𝜈 (𝑥))2 = 𝑑 .

We write DistH (𝜔,S) to denote Dist(𝜔,S) where 𝜌H (𝜔, 𝜈) is used
instead of 𝜌 (𝜔, 𝜈). depthH (𝜔,S) is defined in the same manner.

The following proposition shows that computing the forward

and backward safety (using 𝜌 (𝜔, 𝜈)) can be reduced to a compu-

tation using 𝜌H (𝜔, 𝜈) with the appropriate variable sets H , i.e.,

Var(𝜙𝑝𝑟𝑒 ) or Var(𝜙𝑝𝑜𝑠𝑡 ).
Proposition 3. For 𝑢,𝑢1, 𝑢2 ∈ R, and formula 𝜙 ,𝜓 , if

• 𝑢 = inf{Dist(𝜔, ⟦𝜙⟧) | 𝜔 ∈ ⟦𝜓⟧}
• 𝑢1 = inf{DistVar(𝜙) (𝜔, ⟦𝜙⟧) | 𝜔 ∈ ⟦𝜓⟧}
• 𝑢2 = inf{DistVar(𝜓 ) (𝜔, ⟦𝜙⟧) | 𝜔 ∈ ⟦𝜓⟧}

then 𝑢 = 𝑢1 = 𝑢2.

Intuitively, the proposition holds because the infimum value of

𝑢 is essentially decided by the distance calculated w.r.t. the relevant

variables in 𝜙 or𝜓 . The detailed proof can be found in Appendix B.

Forward Simulation Distance. We introduce the notion of

forward simulation distance. Intuitively, programs 𝛽 and 𝛼 are in

forward simulation at distance 𝑑 if given the same initial condition,

𝛼 can mimic the behaviors of 𝛽 , i.e., 𝛼 is able to reach states whose

distance with those reached by 𝛽 is at most 𝑑 .

Definition 8 (Forward simulation distance). For hybrid programs

𝛽 , 𝛼 , formula 𝜙𝑝𝑟𝑒 and a set of variables H , 𝛽 and 𝛼 are at forward

simulation distance 𝑑 w.r.t. 𝜙𝑝𝑟𝑒 andH , written 𝛽 ⊑F

𝜙𝑝𝑟𝑒 ,H,𝑑
𝛼 , if for

each state 𝜈1 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨𝛽⟩⟧ there exists a state 𝜈2 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨𝛼⟩⟧ such

that 𝜌H (𝜈1, 𝜈2) ≤ 𝑑 .

Here, for programs 𝛼 and attacked(𝛼, 𝑆𝐴, 𝑜), the forward sim-

ulation attacked(𝛼, 𝑆𝐴, 𝑜) ⊑F

𝜙𝑝𝑟𝑒 ,H,𝑑
𝛼 expresses that for each

state 𝜈1 reachable by attacked(𝛼, 𝑆𝐴, 𝑜), from some initial states

in ⟦𝜙𝑝𝑟𝑒⟧, there is a state 𝜈2 reachable by 𝛼 , from some initial state

in ⟦𝜙𝑝𝑟𝑒⟧, such that 𝜈1 and 𝜈2 are at distance at most 𝑑 , for a fixed

variable set H . The distance 𝑑 gives an upper bound on the per-

turbation introduced by the attack on the safety of the behaviors

originating from ⟦𝜙𝑝𝑟𝑒⟧. The setH here often refers to variables

that are relevant to the system’s postcondition, i.e., Var(𝜙𝑝𝑜𝑠𝑡 ).
For example, let 𝛼 be the program modeling the cooling system

shown in Figure 4 and attacked(𝛼, 𝑆𝐴, 𝑜) the attacked version

shown in Figure 5. LetH be Var(𝜙𝑝𝑜𝑠𝑡 ) = {𝑡𝑒𝑚𝑝𝑝 }. The forward
distance between attacked(𝛼, 𝑆𝐴, 𝑜) and 𝛼 w.r.t. 𝜙𝑝𝑟𝑒 and H is

0.3, which we will show by the proof method in the next section.

From the existing example shown after Definition 5, we know 0.3

is indeed an upper bound of the loss of forward safety.

The following theorem states that the forward simulation dis-

tance 𝑑 between attacked(𝛼, 𝑆𝐴, 𝑜) and 𝛼 w.r.t. Var(𝜙𝑝𝑜𝑠𝑡 ), is in-
deed an upper bound to the loss of forward safety due to the attack.

Theorem 3. For a hybrid program 𝛼 , a set of variables 𝑆𝐴 ⊆ Var(𝛼),
formulas 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , an offset function 𝑜 , and 𝑑,𝑢 ∈ R, if
• F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), with 𝑢 > 0

• attacked(𝛼, 𝑆𝐴, 𝑜) ⊑F

𝜙𝑝𝑟𝑒 ,Var(𝜙𝑝𝑜𝑠𝑡 ),𝑑 𝛼

then F-robust(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 , 𝑆𝐴, 𝑜, 𝛿), for some 𝛿 such that 𝛿 ≥
(𝑢 − 𝑑)/𝑢.

The theorem says that 𝑑 is an upper bound of the loss of forward

safety, meaning that F-safe𝑢1
(attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), for

some 𝑢1 such that 𝑑 ≥ 𝑢 − 𝑢1.

Proof. Let H be the set of variables Var(𝜙𝑝𝑜𝑠𝑡 ). We need to

prove F-safe𝑢1
(attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for 𝑢1 ≥ 𝑢 − 𝑑 .

By definition, we have F-safe𝑢1
(attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )

if 𝑢1 = inf{Dist(𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧) | 𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩⟧}.
Consider an arbitrary state 𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩⟧. By
the hypothesis attacked(𝛼, 𝑆𝐴, 𝑜) ⊑F

𝜙𝑝𝑟𝑒 ,H,𝑑
𝛼 , we infer that there

is some state 𝜈 ′ ∈ ⟦𝜙𝑝𝑟𝑒 ⟨𝛼⟩⟧ with 𝜌H (𝜈, 𝜈 ′) ≤ 𝑑 . The hypothe-

sis F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) coincides, by definition, with property

𝑢 = inf{Dist(𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧) | 𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨𝛼⟩⟧}. By Proposition 3, we

infer 𝑢 = inf{DistH (𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧) | 𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨𝛼⟩⟧}. Since 𝜈 ′ ∈
⟦𝜙𝑝𝑟𝑒 ⟨𝛼⟩⟧, we infer DistH (𝜈 ′, ⟦𝜙𝑝𝑜𝑠𝑡⟧) ≥ 𝑢. Since 𝜌H (_, _) is a
metric, it is symmetric, thus implying 𝜌H (𝜈, 𝜈 ′) = 𝜌H (𝜈 ′, 𝜈), and
satisfies the triangular property. By the triangular property we infer

that for any 𝜈 ′′ ∉ ⟦𝜙𝑝𝑜𝑠𝑡⟧,
𝜌H (𝜈 ′, 𝜈′′) ≤ 𝜌H (𝜈 ′, 𝜈) + 𝜌H (𝜈, 𝜈 ′′) .

By definition of DistH (𝜈 ′, ⟦𝜙𝑝𝑜𝑠𝑡⟧) we know 𝜌H (𝜈 ′, 𝜈′′) ≥ 𝑢, and

since 𝜌H (𝜈, 𝜈 ′) ≤ 𝑑 , then 𝜌H (𝜈, 𝜈 ′′) ≥ 𝑢 − 𝑑 . By definition of

DistH (𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧) and the arbitrarity of 𝜈 , we infer

inf{DistH (𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧)|𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩⟧} ≥ 𝑢 −𝑑.

By Proposition 3 we infer:

inf{Dist(𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧)|𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩⟧} ≥ 𝑢 − 𝑑.

This completes the proof. □
Note that Theorem 3 may also hold for supersets of Var(𝜙𝑝𝑜𝑠𝑡 ),

e.g., it holds for Var(𝜙𝑝𝑟𝑒 ) ∪ Var(𝜙𝑝𝑜𝑠𝑡 ). However, the forward
simulation distance 𝑑 w.r.t. a superset is no smaller than the value

of 𝑑 for Var(𝜙𝑝𝑜𝑠𝑡 ), since 𝜌H (𝜔, 𝜈) increases when more variables

are involved. A larger 𝑑 would give us a loose bound of safety loss.

Backward Simulation Distance. Symmetrically, we introduce

backward simulation distance to reason with upper bounds of loss of

backward safety caused by sensor attacks. Intuitively, programs 𝛽

and 𝛼 are in backward simulation distance 𝑑 if for the same post-

condition, 𝛼 can mimic the behaviors of 𝛽 that may violate the

postcondition. This means that initial states that can lead to viola-

tion of safety condition of the two systems are distant at most 𝑑 .

Definition 9 (Backward simulation distance). For hybrid programs

𝛽 and 𝛼 , formula 𝜙𝑝𝑜𝑠𝑡 and a set of variables H , 𝛽 and 𝛼 are at

backward simulation distance 𝑑 w.r.t. 𝜙𝑝𝑜𝑠𝑡 and H , formally written

as 𝛽 ⊑B

𝜙𝑝𝑜𝑠𝑡 ,H,𝑑
𝛼 , if for each state 𝜔1 ∈ ⟦⟨𝛽⟩¬𝜙𝑝𝑜𝑠𝑡⟧ there exists a

state 𝜔2 ∈ ⟦⟨𝛼⟩¬𝜙𝑝𝑜𝑠𝑡⟧ such that 𝜌H (𝜔1, 𝜔2) ≤ 𝑑 .

Here, attacked(𝛼, 𝑆𝐴, 𝑜) ⊑B

𝜙𝑝𝑜𝑠𝑡 ,H,𝑑
𝛼 means that for each ini-

tial state 𝜔1, from which attacked(𝛼, 𝑆𝐴, 𝑜) can reach a unsafe

state in ⟦¬𝜙𝑝𝑜𝑠𝑡⟧, there is an initial state 𝜔2, from which 𝛼 can

reach a state in ⟦¬𝜙𝑝𝑜𝑠𝑡⟧, such that 𝜔1 and 𝜔2 are at distance at

most 𝑑 , w.r.t. a set of variables H . Thus, the backward distance be-

tween the original and the compromised system returns an upper

bound on the admissible perturbations introduced by a sensor at-

tack on the initial states leading to possible violations of safety, fixed

a desired postcondition𝜙𝑝𝑜𝑠𝑡 . The setH often is the set of variables

that are relevant to the system’s precondition, i.e., Var(𝜙𝑝𝑟𝑒 ).
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For example, let 𝛼 be the program modeling the cooling system

shown in Figure 4. We consider a sensor attack that introduces

an offset 0.3 to the temperature sensor. Let H be Var(𝜙𝑝𝑟𝑒 ) =

{𝑡𝑒𝑚𝑝𝑝 }. The backward distance between attacked(𝛼, 𝑆𝐴, 𝑜) and
𝛼 w.r.t. 𝜙𝑝𝑜𝑠𝑡 and H is 0, which we will show by the proof method

in the next section. From the existing examples, we know 0 is indeed

an upper bound of the loss of backward safety.

The following theorem states that the backward simulation

distance 𝑑 between attacked(𝛼, 𝑆𝐴, 𝑜) and 𝛼 w.r.t. variable set

Var(𝜙𝑝𝑟𝑒 ), is indeed an upper bound to the loss of backward safety

due to the attack.

Theorem 4. For a hybrid program 𝛼 , a set of variables 𝑆𝐴 ⊆ Var(𝛼),
formulas 𝜙𝑝𝑟𝑒 and 𝜙𝑝𝑜𝑠𝑡 , an offset function 𝑜 and 𝑑, 𝑟 ∈ R, if
• B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), with 𝑟 > 0

• attacked(𝛼, 𝑆𝐴, 𝑜) ⊑B

𝜙𝑝𝑜𝑠𝑡 ,Var(𝜙𝑝𝑟𝑒 ),𝑑 𝛼

then B-robust(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 , 𝑆𝐴, 𝑜, 𝛿) for some 𝛿 such that 𝛿 ≥
(𝑟 − 𝑑)/𝑟 .

The theorem says that 𝑑 is an upper bound of the loss of back-

ward safety, meaningB-safe𝑟1 (attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) for
some 𝑟1 such that 𝑑 ≥ 𝑟 − 𝑟1. The theorem can be similarly proven

as Theorem 3. The detailed proof can be found in Appendix B.

6 Proving Simulation Distances
This section shows that simulation distance⊑F

𝜙𝑝𝑟𝑒 ,H,𝑑
and⊑B

𝜙𝑝𝑟𝑒 ,H,𝑑

can be expressed as a dL formula, thus existing tools, such as KeY-

maera X [15], can be used to check whether the relation holds

between a given program and its attacked version.

6.1 Encoding Simulation Distances with Formulas
The forward and backward simulation distance are defined upon

distance between states that respectively satisfy two formulas. For

example, the forward distance is computed on states satisfying,

respectively, 𝜙𝑝𝑟𝑒 ⟨𝛽⟩ and 𝜙𝑝𝑟𝑒 ⟨𝛼⟩. Moreover, both distances are

formalized in a “forall exists” manner. Therefore, a direct way to

verify them, is to compute the relevant two formulas, and then

verify the distance between states that satisfy the two formulas.

Based on this insight, the following formula can be instantiated

with different formulas to verify both simulation distances:

(𝜙 ∧ (𝑦 = 𝑥)) → ∃𝑥 . (𝜓 ∧ (𝜌H (𝑦, 𝑥) ≤ 𝑑))
where 𝜙 and 𝜓 are formulas specifying, respectively, conditions

of the compromised system and the original system. They share

the same set of variables. Here 𝑥 are variables used by 𝜙 and 𝜓 ,

and 𝑦 are a list of fresh variables whose dimension is the same as

𝑥 . Variables in 𝑦 are (implicitly) universally quantified. The fresh

variables are used to store values of 𝑥 that satisfy the first formula.

The notation 𝜌H (𝑦, 𝑥) computes the distance between two vectors

of variables w.r.t. the set H :

√︃∑
𝑥 (𝑖 ) ∈H (𝑥 (𝑖) − 𝑦 (𝑖))2, where 𝑥 (𝑖)

and 𝑦 (𝑖) represent, respectively, the 𝑖th element in vector 𝑥 and 𝑦.

The encoding can be used to verify forward distance by letting

𝜙 and𝜓 , respectively, be 𝜙𝑝𝑟𝑒 ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩ and 𝜙𝑝𝑟𝑒 ⟨𝛼⟩.
Consider the cooling system example, we know 𝜙𝑝𝑟𝑒 ⟨𝛼⟩ and

𝜙𝑝𝑟𝑒 ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩ are, respectively, 99.2 < 𝑡𝑒𝑚𝑝𝑝 ≤ 101.3

and 99.5 < 𝑡𝑒𝑚𝑝𝑝 ≤ 101. We can express that attacked(𝛼, 𝑆𝐴, 𝑜)
and 𝛼 are at forward distance 0.3 w.r.t. 𝜙𝑝𝑟𝑒 and H = Var(𝜙𝑝𝑟𝑒 ) =

{𝑡𝑒𝑚𝑝𝑝 } with the following formula:

(99.2 < 𝑡𝑒𝑚𝑝𝑝 ≤ 101.3 ∧ 𝑓𝑣𝑝 = 𝑡𝑒𝑚𝑝𝑝 ) →

(∃𝑡𝑒𝑚𝑝𝑝 . 99.5 < 𝑡𝑒𝑚𝑝𝑝 ≤ 101 ∧ (
√︃
(𝑡𝑒𝑚𝑝𝑝 − 𝑓𝑣𝑝 )2 ≤ 0.3))

The encoding can also be instantiated for verifying backward sim-

ulation distance by letting 𝜙 and𝜓 be ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩¬𝜙𝑝𝑜𝑠𝑡
and ⟨𝛼⟩¬𝜙𝑝𝑜𝑠𝑡 , respectively.

For the cooling system example, we know that ⟨𝛼⟩¬𝜙𝑝𝑜𝑠𝑡 and
⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩¬𝜙𝑝𝑜𝑠𝑡 are both 𝑡𝑒𝑚𝑝𝑝 > 105. We can express

attacked(𝛼, 𝑆𝐴, 𝑜) and 𝛼 are at backward simulation distance 0

w.r.t. 𝜙𝑝𝑜𝑠𝑡 andH = {𝑡𝑒𝑚𝑝𝑝 }, with the following formula:

(𝑡𝑒𝑚𝑝𝑝 > 105.0 ∧ 𝑓𝑣𝑝 = 𝑡𝑒𝑚𝑝𝑝 ) →

(∃𝑡𝑒𝑚𝑝𝑝 . 𝑡𝑒𝑚𝑝𝑝 > 105.0 ∧
√︃
(𝑡𝑒𝑚𝑝𝑝 − 𝑓𝑣𝑝 )2 ≤ 0)

Both formulas can be easily verified with KeYmaera X.

Using this encoding requires computing the strongest postcon-

dition and weakest precondition, which may be difficult, especially

for systems with complex dynamics. To alleviate the problem, we

can over-approximate the conditions for the compromised systems

and under-approximate the conditions for the original systems.

This would allows us to compute an upper bound of the loss of

safety. And we would still be able to compare different system de-

signs with such a bound. The quality of the upper bound depends

on how good the approximations are.

6.2 Encoding Simulation Distance with Modalities
An alternativeway to encode the two simulation distances is through

modalities, which directly express program executions.

For forward distance, i.e., attacked(𝛼, 𝑆𝐴, 𝑜) ⊑F

𝜙𝑝𝑟𝑒 ,H,𝑑
𝛼 , we

can express it as the following dL formula:

(𝜙𝑝𝑟𝑒 ∧ ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩(𝑦 = 𝑥)) →
(∃𝑥 . 𝜙𝑝𝑟𝑒 ∧ ⟨𝛼⟩(𝜌H (𝑦, 𝑥) ≤ 𝑑))

The first line encodes “for each state that can be reached from

precondition 𝜙𝑝𝑟𝑒 after an execution of the compromised program”.

The fresh variables of 𝑦 are used to record the reachable states.

The second line encodes “there is an execution of the original

program under precondition 𝜙𝑝𝑟𝑒 such that the distance between

the corresponding final states is bound by 𝑑 .”

Similarly, we can use the following dL formula to express the

backward simulation distance attacked(𝛼, 𝑆𝐴, 𝑜) ⊑B

𝜙𝑝𝑜𝑠𝑡 ,H,𝑑
𝛼 :

((𝑦 = 𝑥) ∧ ⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩¬𝜙𝑝𝑜𝑠𝑡 ) →
(∃𝑥 . (𝜌H (𝑥,𝑦) ≤ 𝑑) ∧ ⟨𝛼⟩¬𝜙𝑝𝑜𝑠𝑡 )

The first line encodes “for each initial state that can lead the com-

promised system to unsafe states”. The fresh variables of 𝑦 are used

to record the initial states. The second line encodes “there is an

initial state that can lead the original program to unsafe states such

that the distance between the two initial states is bound by 𝑑 .”

Verifying the modality-based encodings could be a nontrivial

task. Such a “forall, exists” relational property is difficult to verify in

general. Existingwork have introduced some approaches that tackle

similar problems using self-composition [45]. Exploring efficient

ways to verify these encodings is an interesting future work.

7 Case Study
In this section, we showcase the concepts and techniques intro-

duced in this work with a case study. Consider an autonomous



Quantitative Robustness Analysis of Sensor Attacks on Cyber-Physical Systems HSCC ’23, May 9–12, 2023, San Antonio, TX, USA

(System Constants : 𝐴 = 1, 𝐵 = 1, 𝜖 = 1)
𝜙𝑝𝑟𝑒 ≡ (2𝐵𝑑𝑝 > 𝑣2𝑝 ) ∧ 𝑣𝑝 ≥ 0

𝜙𝑝𝑜𝑠𝑡 ≡ 𝑑𝑝 > 0

𝜓 ≡ 2𝐵𝑑𝑠 > 𝑣2𝑠 + (𝐴 + 𝐵) (𝐴𝜖2 + 2𝑣𝑠𝜖)
𝑎𝑐𝑐𝑒𝑙 ≡ ?𝜓 ; 𝑎 := 𝐴

𝑏𝑟𝑎𝑘𝑒 ≡ 𝑎 := −𝐵
𝑐𝑡𝑟𝑙 ≡ 𝑑𝑠 := 𝑑𝑝 ; 𝑣𝑠 := 𝑣𝑝 ; (𝑎𝑐𝑐𝑒𝑙 ∪ 𝑏𝑟𝑎𝑘𝑒)

𝑝𝑙𝑎𝑛𝑡 ≡ 𝑑𝑝
′ = −𝑣𝑝 , 𝑣𝑝 ′ = 𝑎, 𝑡 ′ = 1&(𝑣𝑝 ≥ 0 ∧ 𝑡 ≤ 𝜖)

𝜙𝑠𝑎𝑓 𝑒𝑡𝑦 ≡ 𝜙𝑝𝑟𝑒 → [(𝑐𝑡𝑟𝑙 ; 𝑝𝑙𝑎𝑛𝑡)∗]𝜙𝑝𝑜𝑠𝑡
Figure 6. dL model of an autonomous vehicle with sensing

vehicle that needs to stop before hitting an obstacle.
1
For simplic-

ity, we model the vehicle in just one dimension. Figure 6 shows a

dL model of such an autonomous vehicle with sensing. Let 𝑑𝑝 and

𝑑𝑠 , respectively, be the vehicle’s physical and sensed distance from

the obstacle. The safety condition that we would like to enforce

(𝜙𝑝𝑜𝑠𝑡 ) is that 𝑑𝑝 is positive. Let 𝑣𝑝 be the vehicle’s velocity towards

the obstacle in meters per second (m/s) and 𝑣𝑠 be its sensed value.

Let 𝑎 be the vehicle’s acceleration (m/s
2
). Let 𝑡 be the time elapsed

since the controller was last invoked. The hybrid program 𝑝𝑙𝑎𝑛𝑡

describes how the physical environment evolves over time inter-

val 𝜖 : distance changes according to −𝑣𝑝 (i.e., 𝑑𝑝
′ = −𝑣𝑝 ), velocity

changes according to the acceleration (i.e., 𝑣𝑝
′ = 𝑎), and time passes

at a constant rate (i.e., 𝑡 ′ = 1). The differential equations evolve only

within the time interval 𝑡 ≤ 𝜖 and if 𝑣𝑝 is non-negative (i.e., 𝑣𝑝 ≥ 0).

Program 𝑐𝑡𝑟𝑙 models the vehicle’s controller. The vehicle can

either accelerate at 𝐴 m/𝑠2 or brake at −𝐵 m/𝑠2. For the purposes

of the model, the controller chooses nondeterministically between

these options. Hybrid programs 𝑎𝑐𝑐𝑒𝑙 and 𝑏𝑟𝑎𝑘𝑒 express the con-

troller accelerating or braking (i.e., setting 𝑎 to𝐴 or−𝐵 respectively).

The controller can accelerate only if condition𝜓 is true, which cap-

tures that the vehicle can accelerate for the next 𝜖 seconds only if

doing so would still allow it to brake in time to avoid the obstacle.

For the quantitative analysis of this model, we treat symbolic

variables 𝐴, 𝐵, 𝜖 as the parameters of the system and set them as

constants:𝐴 = 1, 𝐵 = 1, and 𝜖 = 1. In addition, in this case study, we

verify the forward and backward distance using the dL encodings

with formulas, after computing the relevant weakest preconditions

and strongest postconditions using these constants.

Bounded Sensor Attack. The formula 𝜙𝑠𝑎𝑓 𝑒𝑡𝑦 specifies the de-

sired (Boolean) safety property: given an appropriate precondition

𝜙𝑝𝑟𝑒 , the safety condition𝜙𝑝𝑜𝑠𝑡 holds after any execution of the sys-

tem. The safety property indeed holds. Also, by definition, the sys-

tem satisfies F-safe0 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) and B-safe0 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ),
where 𝛼 = (𝑐𝑡𝑟𝑙 ; 𝑝𝑙𝑎𝑛𝑡)∗. However, the system’s safety has no

room for sensing errors. Any sensor attacks that offset the readings

can compromise the safety.

Consider a bounded sensor attack on the velocity sensor that

deviate the readings of 𝑣𝑠 from 𝑣𝑝 up to 1 m/s. We can model

it by replacing 𝑣𝑠 := 𝑣𝑝 with 𝑣𝑠 := ∗; ?𝑣𝑠 ≤ 𝑣𝑝 + 1 ∧ 𝑣𝑠 ≥ 𝑣𝑝 − 1 in

Figure 6. The system is not robust against this attack, i.e., the safety

property no longer holds when the sensor is compromised.

1
Platzer introduces this autonomous vehicle example [38].

A Safer Controller. Now, consider a different controller 𝑐𝑡𝑟𝑙 ′

whose condition for acceleration is designed to tolerate the inac-

curacy of sensed velocity at a maneuver of 2 m/s, then the system

can then be modeled as follows:

𝜓 ′ ≡ 2𝐵𝑑𝑠 > (𝑣𝑠 + 2)2 + (𝐴 + 𝐵) (𝐴𝜖2 + 2(𝑣𝑠 + 2)𝜖)
𝑐𝑡𝑟𝑙 ′ ≡ 𝑑𝑠 := 𝑑𝑝 ; 𝑣𝑠 := 𝑣𝑝 ; ((?𝜓 ′

; 𝑎 := 𝐴) ∪ 𝑎 := −𝐵)
...

Let 𝛽 denote the new system, i.e., 𝛽 = (𝑐𝑡𝑟𝑙 ′ ; 𝑝𝑙𝑎𝑛𝑡)∗. It still holds
that F-safe0 (𝛽, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) and B-safe0 (𝛽, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ).

Consider a different precondition:

𝜙 ′𝑝𝑟𝑒 ≡ (2𝐵𝑑𝑝 > (𝑣𝑝 + 2)2) ∧ 𝑣𝑝 ≥ 0

Executing 𝛽 given precondition 𝜙 ′𝑝𝑟𝑒 , we get a strongest postcondi-
tion (2𝑑𝑝 > (𝑣𝑝 + 2)2) ∧ 𝑣𝑝 ≥ 0. So 𝛽 is forward safe for a degree

of 2 w.r.t. 𝜙𝑝𝑜𝑠𝑡 , i.e., F-safe2 (𝛽, 𝜙 ′𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ).

Forward Simulation Distance. We can prove that program

attacked(𝛽, 𝑆𝐴, 𝑜) and 𝛽 are at forward distance 1.5 w.r.t. 𝜙 ′𝑝𝑟𝑒
and H = Var(𝜙𝑝𝑜𝑠𝑡 ) = {𝑑𝑝 }. Here, 𝜙 ′𝑝𝑟𝑒 ⟨attacked(𝛽, 𝑆𝐴, 𝑜)⟩ is
(2𝐵𝑑𝑝 > (𝑣𝑝 + 1)2) ∧ 𝑣𝑝 ≥ 0. Then the forward simulation distance

can be expressed as:

2𝑑𝑝 > (𝑣𝑝 + 1)2 ∧ 𝑣𝑝 ≥ 0 ∧ 𝑑𝑝 = 𝑓𝑑𝑝 →

∃𝑑𝑝 𝑣𝑝 .((2𝑑𝑝 > (𝑣𝑝 + 2)2) ∧ 𝑣𝑝 ≥ 0 ∧
√︃
(𝑑𝑝 − 𝑓𝑑𝑝 )2 ≤ 1.5))

Here, 𝑓𝑑𝑝 is a fresh variable. KeYmaera X can easily verify this for-

mula. So, attacked(𝛽, 𝑆𝐴, 𝑜) ⊑F

𝜙 ′
𝑝𝑟𝑒 ,{𝑑𝑝 },1.5

𝛽 , being 1.5 the upper

bound of the loss of forward safety. Since F-safe2 (𝛽, 𝜙 ′𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ),
by Theorem 3 it follows:

F-robust(𝛽, 𝜙 ′𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 , 𝑆𝐴, 𝑜, 𝛿)
for some 𝛿 ≥ 0.5

2
= 0.25. So the system is still safe under the attack,

and the percentage of forward safety loss is at most 75%.

Backward Simulation Distance. We already know it holds

that B-safe0 (𝛽, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), so there is not much we can learn

from backward simulation distance here.

Now consider the backward safety of 𝛽 w.r.t. 𝜙 ′𝑝𝑟𝑒 and a different
postcondition 𝜙 ′𝑝𝑜𝑠𝑡 ≡ 𝑑𝑝 > 0.5. We can compute that ⟨𝛽⟩¬𝜙 ′𝑝𝑜𝑠𝑡 is
𝑑𝑝 <= 0.5 ∨ (2(𝑑𝑝 − 0.5) <= 𝑣2𝑝 ∧ 𝑣𝑝 >= 0), and further compute

B-safe
√
2
(𝛽, 𝜙 ′𝑝𝑟𝑒 , 𝜙 ′𝑝𝑜𝑠𝑡 ). Moreover, ⟨attacked(𝛽, 𝑆𝐴, 𝑜)⟩¬𝜙 ′𝑝𝑜𝑠𝑡 is

𝑑𝑝 <= 0.5 ∨ (2𝑑𝑝 <= (𝑣𝑝 + 1)2 ∧ 𝑣𝑝 >= 0).We can express that pro-

gram attacked(𝛽, 𝑆𝐴, 𝑜) and 𝛽 are at backward distance 1 w.r.t.

𝜙 ′𝑝𝑜𝑠𝑡 and Var(𝜙 ′𝑝𝑟𝑒 ):

((𝑑𝑝 <= 0.5 ∨ (2𝑑𝑝 <= (𝑣𝑝 + 1)2 ∧ 𝑣𝑝 >= 0))
∧ 𝑓𝑑𝑝 = 𝑑𝑝 ∧ 𝑓𝑣𝑝 = 𝑣𝑝 ) →

∃𝑑𝑝 𝑣𝑝 .(𝑑𝑝 <= 0.5 ∨ (2(𝑑𝑝 − 0.5) <= 𝑣2𝑝 ∧ 𝑣𝑝 >= 0)

∧
√︃
(𝑑𝑝 − 𝑓𝑑𝑝 )2 + (𝑣𝑝 − 𝑓𝑣𝑝 )2 ≤ 1)

Again, the formula can be verified by KeYmaera X. Then by Theo-

rem 4 and B-safe
√
2
(𝛽, 𝜙 ′𝑝𝑟𝑒 , 𝜙 ′𝑝𝑜𝑠𝑡 ) it follows:

B-robust(𝛽, 𝜙 ′𝑝𝑟𝑒 , 𝜙 ′𝑝𝑜𝑠𝑡 , 𝑆𝐴, 𝑜, 𝛿)

for some 𝛿 ≥
√
2−1√
2

. So the system is still backward safe under the

attack, and the percentage of loss of backward safety due to the

attack is at most 1/
√
2 ≈ 71%.
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8 Related Work
Robustness of CPSs. Our work is a quantitative generalization

of Xiang et at. [45], in the setting of hybrid programs and dL. In

that paper, the authors propose two notions of robustness for CPSs:

robustness of safety, when (unbound) sensor attacks are unable to

affect the system under attack, and robustness of high-integrity state,

when high-integrity parts of the system cannot be compromised.

In the current paper, we generalize the first of the two relations.

Fränzle et al. [14] classify the notions of robustness for CPSs as

follows: (i) input/output robustness; (ii) robustness with respect to

system parameters; (iii) robustness in real-time system implementa-

tion; (iv) robustness due to unpredictable environment; (v) robust-

ness to faults. The notion of robustness considered in this paper

falls in category (iv), where the attacks are the source of environ-

ment’s unpredictability. Other works study robustness properties

for CPSs [19, 20, 40, 43]. Some of them focus on robustness against

attacks [19, 20], even adopting quantitative reasonings [40, 43].

Our notion of forward robustness shares similarities with some

existing notions of robustness, such as invariance [3] and input-

to-state stability [1]. These notions concern if a system stays in a

safe region when small changes happen to initial conditions, while

forward robustness concerns if a system stays in a safe region when

under attack. Although it might be possible to reformulate existing

notions of robustness to characterize our forward robustness, our

formulation focuses on modeling attacks which makes it easier to

analyze their impact.

Signal Temporal Logic (STL) [31] is a specification formalism for

expressing real-time temporal safety and performance properties,

such as robustness, of CPSs. Ferrère et al. [12] study a quantitative

extension of STL that classifies signals as inputs and outputs to

specify the system-under-test as an input/output relation instead of

a set of correct execution traces. The idea behind their approach

is quite similar to that followed in our forward robustness, as they

express families of admissible patterns of both the model inputs and

the model preconditions that guarantee the desired behavior of the

model output. Mohammadinejad et al. [32] adopt a dual approach,

similar to that followed in our backward robustness. Given an out-

put requirement they propose an algorithm tomine an environment

assumption, consisting of a large subset of input signals for which

the corresponding output signals satisfy the output requirement.

Formal Analysis of Sensor Attacks. Lanotte et al. [25, 26, 28]
propose process-calculus approaches to model and analyze the im-

pact of physics-based attacks, as sensor attacks in CPSs. Their threat

models consider attacks that may manipulate both sensor readings

and control commands. Their model of physics is discrete and they

focus on crucial timing aspects of attacks, such as beginning and du-

ration. Bernardeschi et al. [5] introduce a framework to analyze the

effects of attacks on sensors and actuators. Controllers of systems

are specified using the formalism PVS [35]. The physics is described

by other modeling tools. Their threat model is similar to ours: the

effect of an attack is a set of assignments to the variables defined in

the controller. Simulation is used to analyze the effects of attacks.

Huang et al. [20] proposed a risk assessment method that uses a

Bayesian network to model the attack propagation process and

infers the probabilities of sensors and actuators to be compromised.

These probabilities are fed into a stochastic hybrid system model to

predict the evolution of the physical process. Then, the security risk

is quantified by evaluating the system availability with the model.

9 Conclusion
A formal framework for quantitative analysis of bounded sensor

attacks on CPSs is introduced. Given a precondition 𝜙𝑝𝑟𝑒 and post-

condition 𝜙𝑝𝑜𝑠𝑡 of a system 𝛼 , we formalize two safety notions,

quantitative forward safety, F-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), and quantita-

tive backward safety, B-safe𝑢 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), where 𝑢 ∈ R respec-

tively express: (1) how strong the strongest postcondition𝜙𝑝𝑟𝑒 ⟨𝛼⟩ is
with respect to the postcondition 𝜙𝑝𝑜𝑠𝑡 , and (2) how strong the pre-

condition𝜙𝑝𝑟𝑒 is with respect to the weakest precondition [𝛼]𝜙𝑝𝑜𝑠𝑡 .
The bigger 𝑢 is, the safer the system is. On the contrary, if 𝑢 is neg-

ative, then some reachable states violate the safety condition 𝜙𝑝𝑜𝑠𝑡 .

If 𝑢 is 0, then the system cannot be considered safe. We introduce

forward and backward robustness, F-robust(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 , 𝑆𝐴, 𝑜, 𝛿)
and B-robust(𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 , 𝑆𝐴, 𝑜, 𝛿) respectively, to quantify the

robustness 𝛿 , with 𝛿 ≤ 1, for a system 𝛼 against bounded sensor

attacks, as the ratio between the safety of the attacked system and

the degree of safety of the original system; here, the value of (1− 𝛿)

quantifies the percentage of safety that is lost due to the attack. The

closer 𝛿 is to 1, the more robust the system is. To reason about

the notions of robustness, we introduce two simulation distances,

forward and backward simulation distance, defined based on the be-

havior distances between the original system and the compromised

system, to characterize upper bounds of the degree of forward and

backward safety loss caused by the sensor attacks. We verify the

two simulations by expressing them as dL formulas. A case study

on autonomous vehicle is presented.

Applicability. The proposed approach can be applied to systems

where we can compute (or over-approximate) strongest postcondi-

tion and weakest precondition. As mentioned, the computation can

be done with existing work and benefits from future advances in

the verification of CPSs, e.g., complex dynamics. Therefore, though

the examples used in the paper are not very complex, we expect

that the proposed approach can be used on complex systems.

Future work. As observed in [24, 26, 28], timing is a critical issue

when attacking CPSs. We aim at generalizing our threat model to

deal with more sophisticated time-sensitive sensor attacks, where

the attacker may specify (possibly periodic) attack windows in

which offsets might be potentially different in each window, de-

pending on the system state. This might be necessary to implement

stealthy attacks working around adaptive IDSs.

Modality-based encoding might be a more generic approach for

reasoning with simulation distances, but such an encoding is often

difficult to verify. A potential future work is to develop a proof

system for verifying such an encoding, e.g., a relational logic to

reason about the upper bound of behavior distance between two

programs. We expect that such a logic would greatly help proof

automation and let us reason about systems where the computation

of the strongest postcondition and weakest precondition is difficult.
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A Definitions
We present the definitions of bound variables, free variables, and

variable sets for hybrid programs and dL formulas.

Definition 10 (Bound variables). The set BV(𝜙) of bound variables
of dL formula 𝜙 is defined inductively as:

BV(𝜃 ∼ 𝛿) = ∅ ∼ ∈ {<, ≤,=, >, ≥}
BV(¬𝜙) = BV(𝜙)

BV(𝜙 ∧𝜓 ) = BV(𝜙) ∪ BV(𝜓 )
BV(∀𝑥 . 𝜙) = {𝑥} ∪ BV(𝜙)
BV( [𝛼]𝜙) = BV(𝛼) ∪ BV(𝜙)

The set BV(𝛼) of bound variables of hybrid program 𝛼 , i.e., those may

potentially be written to, is defined inductively as:

BV(𝑥 := 𝜃 ) = BV(𝑥 := ∗) = {𝑥}
BV(?𝜙) = ∅

BV(𝑥 ′ = 𝜃 &𝜙) = {𝑥, 𝑥 ′}
BV(𝛼 ; 𝛽) = BV(𝛼 ∪ 𝛽) = BV(𝛼) ∪ BV(𝛽)

BV(𝛼∗) = BV(𝛼)

Definition 11 (Must-bound variables). The set MBV(𝛼) ⊆ BV(𝛼)
of most bound variables of hybrid program 𝛼 , i.e., all those that must

be written to on all paths of 𝛼 , is defined inductively as:

MBV(𝑥 := 𝜃 ) = MBV(𝑥 := ∗) = {𝑥}
MBV(?𝜙) = ∅

MBV(𝑥 ′ = 𝜃 &𝜙) = {𝑥, 𝑥 ′}
MBV(𝛼 ∪ 𝛽) = MBV(𝛼) ∩MBV(𝛽)
MBV(𝛼 ; 𝛽) = MBV(𝛼) ∪MBV(𝛽)
MBV(𝛼∗) = ∅



HSCC ’23, May 9–12, 2023, San Antonio, TX, USA Stephen Chong, Ruggero Lanotte, Massimo Merro, Simone Tini, and Jian Xiang

Definition 12 (Free variables). The set FV(𝜃 ) of variables of term 𝜃

is defined as:

FV(𝜃 ) = {𝜃 }
FV(𝑐) = ∅

FV(𝜃 ⊕ 𝛿) = FV(𝜃 ) ∪ FV(𝛿)
The set FV(𝜙) of free variables of dL formula 𝜙 is defined as:

FV(𝜃 ∼ 𝛿) = FV(𝜃 ) ∪ FV(𝛿)
FV(¬𝜙) = FV(𝜙)

FV(𝜙 ∧𝜓 ) = FV(𝜙) ∪ FV(𝜓 )
FV(∀𝑥 . 𝜙) = FV(𝜙) \ {𝑥}
FV( [𝛼]𝜙) = FV(𝛼) ∪ (FV(𝜙) \MBV(𝛼))

The set FV(𝛼) of bound variables of hybrid program 𝛼 is defined

inductively as:

FV(𝑥 := 𝜃 ) = FV(𝜃 )
FV(𝑥 := ∗) = ∅

FV(?𝜙) = FV(𝜙)
FV(𝑥 ′ = 𝜃 &𝜙) = {𝑥} ∪ FV(𝜃 ) ∪ FV(𝜙)

FV(𝛼 ∪ 𝛽) = FV(𝛼) ∪ FV(𝛽)
FV(𝛼 ; 𝛽) = FV(𝛼) ∪ (FV(𝛽) \MBV(𝛼))
FV(𝛼∗) = FV(𝛼)

Definition 13 (Variable sets). The set Var(𝛼), variables of hybrid
program 𝛼 is BV(𝛼)∪FV(𝛼). The set Var(𝜙), variables of dL formula

𝜙 is BV(𝜙) ∪ FV(𝜙).

B Proofs
Proof of Theorem 1. We prove the inequality𝑢1 ≤ 𝑢, the inequality

𝑢2 ≤ 𝑢1 can be proved similarly. The behaviors of the system with

compromised sensors subsume the behaviors of the original pro-

gram, since the sensed values 𝑞𝑠 can take the correct physical value

𝑞𝑝 . Then we know 𝜙𝑝𝑟𝑒 ⟨attacked(𝛼, 𝑆𝐴, 𝑜1)⟩ contains all states
of 𝜙𝑝𝑟𝑒 ⟨𝛼⟩. Then, according to the definition of forward safety,

inf{Dist(𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧)|𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨𝛼⟩⟧} can only be no smaller than

inf{Dist(𝜈, ⟦𝜙𝑝𝑜𝑠𝑡⟧)|𝜈 ∈ ⟦𝜙𝑝𝑟𝑒 ⟨attacked(𝛼, 𝑆𝐴, 𝑜1)⟩⟧}. □

Proof of Proposition 3. We show 𝑢1 = 𝑢. Property 𝑢2 = 𝑢 can be

proved analogously.

Property 𝑢1 = 𝑢 follows if we show that for all states 𝜔 ∈ ⟦𝜓⟧ it

holds

Dist(𝜔, ⟦𝜙⟧) = DistVar(𝜙) (𝜔, ⟦𝜙⟧). (1)

By definition, we have:

Dist(𝜔, ⟦𝜙⟧) =
{
inf{𝜌 (𝜔, 𝜈) | 𝜈 ∈ ⟦¬𝜙⟧} if 𝜔 ∈ ⟦𝜙⟧
−inf{𝜌 (𝜔, 𝜈) | 𝜈 ∈ ⟦𝜙⟧} if 𝜔 ∉ ⟦𝜙⟧

and

DistVar(𝜙) (𝜔, ⟦𝜙⟧) =
{
inf{𝜌

Var(𝜙) (𝜔, 𝜈) | 𝜈 ∈ ⟦¬𝜙⟧} if 𝜔 ∈ ⟦𝜙⟧
−inf{𝜌

Var(𝜙) (𝜔, 𝜈) | 𝜈 ∈ ⟦𝜙⟧} if 𝜔 ∉ ⟦𝜙⟧.
We prove Eq. 1, by distinguishing two cases, 𝜔 ∈ ⟦𝜙⟧ and 𝜔 ∉ ⟦𝜙⟧.

Case 𝜔 ∈ ⟦𝜙⟧. Since 𝜌 (𝜔, 𝜈) ≥ 𝜌
Var(𝜙) (𝜔, 𝜈) for all states 𝜈 , we

infer Dist(𝜔, ⟦𝜙⟧) ≥ DistVar(𝜙) (𝜔, ⟦𝜙⟧). We can prove that also

Dist(𝜔, ⟦𝜙⟧) ≤ DistVar(𝜙) (𝜔, ⟦𝜙⟧) holds, thus confirming Eq. 1.

For an arbitrary 𝜈 ∈ ⟦¬𝜙⟧, 𝜌
Var(𝜙) (𝜔, 𝜈) is equal to 𝜌 (𝜔, 𝜈 ′), where

𝜈 ′ =

{
𝑥 ↦→ 𝜈 (𝑥) if 𝑥 ∈ Var(𝜙)
𝑥 ↦→ 𝜔 (𝑥) otherwise

and 𝜈 ′ belongs to ⟦¬𝜙⟧. By the arbitrarity of 𝜈 in ⟦¬𝜙⟧, we get
inf{𝜌

Var(𝜙) (𝜔, 𝜈) | 𝜈 ∈ ⟦¬𝜙⟧} ≥ inf{𝜌 (𝜔, 𝜈) | 𝜈 ∈ ⟦¬𝜙⟧}, which
gives Dist(𝜔, ⟦𝜙⟧) ≤ DistVar(𝜙) (𝜔, ⟦𝜙⟧).

Case 𝜔 ∉ ⟦𝜙⟧. Since 𝜌 (𝜔, 𝜈) ≥ 𝜌
Var(𝜙) (𝜔, 𝜈) for all states 𝜈 , we

infer Dist(𝜔, ⟦𝜙⟧) ≤ DistVar(𝜙) (𝜔, ⟦𝜙⟧). We can prove that also

Dist(𝜔, ⟦𝜙⟧) ≥ DistVar(𝜙) (𝜔, ⟦𝜙⟧) holds, thus confirming Eq. 1.

For an arbitrary 𝜈 ∈ ⟦𝜙⟧, 𝜌
Var(𝜙) (𝜔, 𝜈) is equal to 𝜌 (𝜔, 𝜈 ′), where

𝜈 ′ =

{
𝑥 ↦→ 𝜈 (𝑥) if 𝑥 ∈ Var(𝜙)
𝑥 ↦→ 𝜔 (𝑥) otherwise

and 𝜈 ′ belongs to ⟦𝜙⟧. By the arbitrarity of 𝜈 in ⟦𝜙⟧, we get

inf{𝜌
Var(𝜙) (𝜔, 𝜈) | 𝜈 ∈ ⟦𝜙⟧} ≥ inf{𝜌 (𝜔, 𝜈) | 𝜈 ∈ ⟦𝜙⟧}, which gives

Dist(𝜔, ⟦𝜙⟧) ≥ DistVar(𝜙) (𝜔, ⟦𝜙⟧). □

Proof of Theorem 4. Let H be the set Var(𝜙𝑝𝑟𝑒 ). We have to

prove B-safe𝑟1 (attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) with 𝑟1 ≥ 𝑟 − 𝑑 .

By definition, we have B-safe𝑟1 (attacked(𝛼, 𝑆𝐴, 𝑜), 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 )
if 𝑟1 = inf{Dist(𝜔, ⟦[attacked(𝛼, 𝑆𝐴, 𝑜)]𝜙𝑝𝑜𝑠𝑡⟧)|𝜔 ∈ ⟦𝜙𝑝𝑟𝑒⟧}.
Consider an arbitrary state 𝜔 ∈ ⟦𝜙𝑝𝑟𝑒⟧. We have to prove that for

each𝜔 ′ ∈ ⟦⟨attacked(𝛼, 𝑆𝐴, 𝑜)⟩¬𝜙𝑝𝑜𝑠𝑡⟧we have 𝜌 (𝜔,𝜔 ′) ≥ 𝑟−𝑑 .
The thesis is immediate if 𝜔 ′ ∈ ⟦⟨𝛼⟩¬𝜙𝑝𝑜𝑠𝑡⟧, since in that case

the hypothesis B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ), which coincides with 𝑟 =

inf{Dist(𝜔, ⟦[𝛼]𝜙𝑝𝑜𝑠𝑡⟧) | 𝜔 ∈ ⟦𝜙𝑝𝑟𝑒⟧}, ensures that 𝜌 (𝜔,𝜔 ′) >

𝑟 . The interesting case is 𝜔 ′ ∈ ⟦[𝛼]𝜙𝑝𝑜𝑠𝑡⟧. By the hypothesis

attacked(𝛼, 𝑆𝐴, 𝑜) ⊑B

𝜙𝑝𝑜𝑠𝑡 ,H,𝑑
𝛼 there is an 𝜔 ′′ ∈ ⟦⟨𝛼⟩¬𝜙𝑝𝑜𝑠𝑡⟧

with 𝜌H (𝜔 ′, 𝜔′′) ≤ 𝑑 . The hypothesis B-safe𝑟 (𝛼, 𝜙𝑝𝑟𝑒 , 𝜙𝑝𝑜𝑠𝑡 ) and
Proposition 3 ensure that 𝑟 = inf{DistH (𝜔, ⟦[𝛼]𝜙𝑝𝑜𝑠𝑡⟧) | 𝜔 ∈
⟦𝜙𝑝𝑟𝑒⟧}. This inequality together with 𝜔 ′′ ∈ ⟦⟨𝛼⟩¬𝜙𝑝𝑜𝑠𝑡⟧ give

𝜌H (𝜔 ′′, 𝜔) ≥ 𝑟 . Since 𝜌H (_, _) is a metric, it is symmetric, thus im-

plying that 𝜌H (𝜔 ′, 𝜔′′) = 𝜌H (𝜔 ′′, 𝜔′). Moreover 𝜌H (_, _) satisfies
the triangular property, which ensures that

𝜌H (𝜔,𝜔 ′′) ≤ 𝜌H (𝜔,𝜔 ′) + 𝜌H (𝜔 ′, 𝜔′′) .
From this inequality, 𝜌H (𝜔 ′′, 𝜔) ≥ 𝑟 and 𝜌H (𝜔 ′, 𝜔′′) ≤ 𝑑 we infer

𝜌H (𝜔,𝜔 ′) ≥ 𝑟 − 𝑑 . By the arbitrarity of 𝜔 we infer

inf{DistH (𝜔, ⟦[attacked(𝛼, 𝑆𝐴, 𝑜)]𝜙𝑝𝑜𝑠𝑡⟧)|𝜔 ∈ ⟦𝜙𝑝𝑟𝑒⟧} ≥ 𝑟 −𝑑
By Proposition 3, this implies

inf{Dist(𝜔, ⟦[attacked(𝛼, 𝑆𝐴, 𝑜)]𝜙𝑝𝑜𝑠𝑡⟧)|𝜔 ∈ ⟦𝜙𝑝𝑟𝑒⟧} ≥ 𝑟 − 𝑑

This completes the proof. □
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