11.1 Finite Automata

Motivation:

- TMs without a tape: maybe we can at least fully understand such a simple model?
- Algorithms (e.g. string matching)
- Computing with very limited memory
- Formal verification of distributed protocols,
- Hardware and circuit design

Example: Home Stereo

- P = power button (ON/OFF)
- S = source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode.
- A computational problem: does a given a sequence of button presses $w \in \{P,S\}^*$ leave the system with the radio on?

The Home Stereo DFA

Formal Definition of a DFA

• A DFA M is a 5-Tuple $(Q, \Sigma, \delta, q_0, F)$

Q: Finite set of states

 Σ : Alphabet

 δ : "Transition function", $Q \times \Sigma \rightarrow Q$

 q_0 : Start state, $q_0 \in Q$

F: Accept (or final) states, $F \subseteq Q$

• If $\delta(p, \sigma) = q$,

then if *M* is in state *p* and reads symbol $\sigma \in \Sigma$

then M enters state q (while moving to next input symbol)

Another Visualization

M accepts string *x* if

- After starting M in the start[initial] state with head on first square,
- when all of x has been read,
- *M* winds up in a final state.

Example

Bounded Counting: A DFA that recognizes $\{x : x \text{ has an even } \# \text{ of } a \text{'s and an odd } \# \text{ of } b \text{'s}\}$

Transition function δ :

$$=$$
 start state

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_2\}$$

Formal Definition of Computation

 $M = (Q, \Sigma, \delta, q_0, F)$ accepts $w = w_1 w_2 \cdots w_n \in \Sigma^*$ (where each $w_i \in \Sigma$) if there exist $r_0, \dots, r_n \in Q$ such that

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each i = 0, ..., n-1, and
- 3. $r_n \in F$.

The language recognized (or accepted) by M, denoted L(M), is the set of all strings accepted by M.

Another Example

• Pattern Recognition: A DFA that accepts $\{x : x \text{ has } aab \text{ as a substring}\}$.

Another Example, To Do On Your Own

• Pattern Recognition: A DFA that accepts $\{x : x \text{ has } ababa \text{ as a substring}\}$.

Using DFAs for Pattern Recognition

Problem: given a *pattern* $w \in \Sigma^*$ of length m and a string $x \in \Sigma^*$ of length n, decide whether w is a substring of x.

Algorithm:

- 1. Construct a DFA *M* that accepts $L_w = \{x \in \Sigma^* : w \text{ is a substring of } x\}$.
 - States are $Q = \{0, 1, ..., m\}$. State q represents:
 - Transitions: $\delta(q, \sigma) =$
 - Time to construct *M* (naively): $O(m^3 \cdot |\Sigma|)$.
- 2. Run *M* on *x*.
 - Time: O(n)

The running time can be improved to O(m+n), using an appropriate implicit representation of the DFA. Widely used in practice!

Characterizing the Power of Finite Automata

Def: A language $L \subseteq \Sigma^*$ is *regular* iff there is a DFA M such that L(M) = L. REG denotes the class of regular languages.

The terminology "regular" comes from an equivalent characterization in terms of *regular expressions* (which we won't cover in lecture, but possibly will on a problem set). Note that $REG \subseteq TIME_{TM}(n)$; it also can be shown that $REG \subseteq CF$. Unlike classes associated with universal models (like TMs and Word-RAMs), we have a fairly complete understanding of the class of regular languages. In particular,

Myhill-Nerode Theorem: A language $L \subseteq \Sigma^*$ is regular iff there are only finitely many equivalence classes under the following equivalence relation \sim_L on Σ^* : $x \sim_L y$ iff for all strings $z \in \Sigma^*$, we have $xz \in L \Leftrightarrow yz \in L$. Moreover, the minimum number of states in a DFA for L is exactly the number of equivalence classes under \sim_L .

(Exercises: refresh your memory on the definition of equivalence relations and equivalence classes.)

Proof: \Rightarrow .

 \Leftarrow . Suppose \sim_L has finitely many equivalence classes, where we write $[x]_L$ for the equivalence class containing x. We construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ as follows:

- Q is the set of equivalence classes under \sim_L .
- $q_0 = [\varepsilon]_L$.
- $F = \{ [x]_L : x \in L \}.$
- $\delta([x]_L, \sigma) = [x\sigma]_L$. (Note that this is well-defined: if $x \sim_L y$, then $x\sigma \sim_L y\sigma$, so the choice of the representative x of the equivalence class does not affect the result.)

By induction on |x|, it can be shown that running M on x leads to state $[x]_L$, and hence we accept exactly the strings in L.

Proving that languages are nonregular. To show that L is nonregular, we only need to exhibit an infinite set of strings that are all inequivalent under \sim_L . Some examples follow:

- $L = \{a^n b^n : n \ge 0\}$. Claim: $\varepsilon, a, a^2, a^3, a^4, \dots$ are all inequivalent under \sim_L .
- $L = \{w \in \Sigma^* : |w| = 2^n \text{ for some } n \ge 0\}$. Claim: $\varepsilon, a, a^2, a^3, a^4, \ldots$ are all inequivalent under \sim_L . Suppose $a^i \sim_L a^j$ for some i > j. Let k be any power of 2 larger than i and j. Then $a^j \cdot a^{k-j} \in L$, so $a^i \cdot a^{k-j} \in L$ and hence k+i-j is a power of 2. But 2k is the next larger power of 2 after k. $\Rightarrow \Leftarrow$.
- $L = \{ w \in \Sigma^* : w = w^R \}$ (palindromes).