
CS125 Lecture 11 Fall 2014

11.1 Finite Automata

Motivation:

• TMs without a tape: maybe we can at least fully understand such a simple model?

• Algorithms (e.g. string matching)

• Computing with very limited memory

• Formal verification of distributed protocols,

• Hardware and circuit design

Example: Home Stereo

• P = power button (ON/OFF)

• S = source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.

• Starts OFF, in CD mode.

• A computational problem: does a given a sequence of button presses w ∈ {P,S}∗ leave the system with the

radio on?

The Home Stereo DFA

11-1

Lecture 11 11-2

Formal Definition of a DFA

• A DFA M is a 5-Tuple (Q,Σ,δ,q0,F)

Q : Finite set of states

Σ : Alphabet

δ : “Transition function”, Q x Σ→ Q

q0 : Start state, q0 ∈ Q

F : Accept (or final) states, F ⊆ Q

• If δ(p,σ) = q,

then if M is in state p and reads symbol σ ∈ Σ

then M enters state q (while moving to next input symbol)

Another Visualization

a b b a b a

1

2

3

4

Input tape

Start state marked with <

Double-circled states
are accepting or final

Reading head
moves left to
right, one square
at a time

Finite-state control changes
state depending on:
• current state
• next symbol

M accepts string x if

• After starting M in the start[initial] state with head on first square,

• when all of x has been read,

• M winds up in a final state.

Lecture 11 11-3

Example

Bounded Counting: A DFA that recognizes {x : x has an even # of a’s and an odd # of b’s}

q0 q1

q2 q3

a

a

a

a

b b b b

Transition function δ:

a b

q0 q1 q2

q1 q0 q3

q2 q3 q0

q3 q2 q1.

i.e. δ(q0,a) = q1,
etc.

= start state = final state

Q = {q0,q1,q2,q3} Σ = {a,b} F = {q2}

Formal Definition of Computation

M = (Q,Σ,δ,q0,F) accepts w = w1w2 · · ·wn ∈ Σ∗ (where each wi ∈ Σ) if there exist r0, . . . ,rn ∈ Q such that

1. r0 = q0,

2. δ(ri,wi+1) = ri+1 for each i = 0, . . . ,n−1, and

3. rn ∈ F .

The language recognized (or accepted) by M, denoted L(M), is the set of all strings accepted by M.

Lecture 11 11-4

Another Example

• Pattern Recognition: A DFA that accepts { x : x has aab as a substring}.

Another Example, To Do On Your Own

• Pattern Recognition: A DFA that accepts { x : x has ababa as a substring}.

Using DFAs for Pattern Recognition

Problem: given a pattern w ∈ Σ∗ of length m and a string x ∈ Σ∗ of length n, decide whether w is a substring of x.

Algorithm:

1. Construct a DFA M that accepts Lw = {x ∈ Σ∗ : w is a substring of x}.

• States are Q = {0,1, . . . ,m}. State q represents:

• Transitions: δ(q,σ) =

• Time to construct M (naively): O(m3 · |Σ|).

2. Run M on x.

• Time: O(n)

The running time can be improved to O(m+n), using an appropriate implicit representation of the DFA. Widely

used in practice!

Lecture 11 11-5

Characterizing the Power of Finite Automata

Def: A language L ⊆ Σ∗ is regular iff there is a DFA M such that L(M) = L. REG denotes the class of regular

languages.

The terminology “regular” comes from an equivalent characterization in terms of regular expressions (which

we won’t cover in lecture, but possibly will on a problem set). Note that REG ⊆ TIMETM(n); it also can be shown

that REG ⊆ CF. Unlike classes associated with universal models (like TMs and Word-RAMs), we have a fairly

complete understanding of the class of regular languages. In particular,

Myhill-Nerode Theorem: A language L ⊆ Σ∗ is regular iff there are only finitely many equivalence classes

under the following equivalence relation ∼L on Σ∗: x ∼L y iff for all strings z ∈ Σ∗, we have xz ∈ L⇔ yz ∈ L.

Moreover, the minimum number of states in a DFA for L is exactly the number of equivalence classes under ∼L.

(Exercises: refresh your memory on the definition of equivalence relations and equivalence classes.)

Proof: ⇒.

⇐. Suppose ∼L has finitely many equivalence classes, where we write [x]L for the equivalence class containing

x. We construct a DFA M = (Q,Σ,δ,q0,F) as follows:

• Q is the set of equivalence classes under ∼L.

• q0 = [ε]L.

• F = {[x]L : x ∈ L}.

• δ([x]L,σ) = [xσ]L. (Note that this is well-defined: if x∼L y, then xσ∼L yσ, so the choice of the representative

x of the equivalence class does not affect the result.)

By induction on |x|, it can be shown that running M on x leads to state [x]L, and hence we accept exactly the strings

in L.

Lecture 11 11-6

Proving that languages are nonregular. To show that L is nonregular, we only need to exhibit an infinite set of

strings that are all inequivalent under ∼L. Some examples follow:

• L = {anbn : n≥ 0}. Claim: ε,a,a2,a3,a4, . . . are all inequivalent under ∼L.

• L = {w ∈ Σ∗ : |w|= 2n for some n≥ 0}. Claim: ε,a,a2,a3,a4, . . . are all inequivalent under ∼L. Suppose

ai ∼L a j for some i > j. Let k be any power of 2 larger than i and j. Then a j · ak− j ∈ L, so ai · ak− j ∈ L and

hence k+ i− j is a power of 2. But 2k is the next larger power of 2 after k. ⇒⇐.

• L = {w ∈ Σ∗ : w = wR} (palindromes).

