
CS125 Lecture 15 Fall 2014

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete

• Already know SAT ∈ NP, so only need to show SAT is NP-hard.

• Let L be any language in NP. Let M be a NTM that decides L in time nk.

We define a polynomial-time reduction

fL : inputs 7→ formulas

such that for every w,

M accepts input w iff fL(w) is satisfiable

Reduction via “computation histories”

Proof Idea: satisfying assignments of fL(w)↔ accepting computations of M on w

Describe computations of M by boolean variables:

– If n = |w|, then any computation of M on w has at most nk configurations.

– Each configuration is an element of Cnk
, where C = Q∪Γ∪{#}

(mark left and right ends with {#}).
 computation depicted by nk×nk “tableau” of members of C.

– Represent contents of cell (i, j) by |C| boolean variables {xi, j,s : s∈C}, where xi, j,s = 1 means “cell (i, j)
contains s”.

– 0≤ i, j < nk, so |C| ·n2k boolean variables in all

Subformulas that verify the computation

Express conditions for an accepting computation on w
by boolean formulas:

• φcell = “for each (i, j), there is exactly one s ∈C such that xi, j,s = 1”.

15-1

Lecture 15 15-2

• φstart = “first row equals start configuration on w”

• φaccept = “last row is an accept configuration on w”

• φmove = “every 2×3 window is consistent with the transition function of M”

Completing the proof

Claim: Each of above can be expressed by a formula of size of size O((nk)2) =O(n2k), and can be constructed
in polynomial time from w.

Claim: M has an accepting computation on w if and only if fL(w)= φcell∧φstart∧φaccept∧φmove has a satisfying
assignment.

Thus w 7→ fL(w) is a polynomial-time reduction from L to SAT.

Since above holds for every L ∈ NP, SAT is NP-hard, as desired. �

Lecture 15 15-3

15.2 Towards Resolving P vs. NP

Lecture 15 15-4

15.3 Around and Within NP

co-NP

co-NP = {L : L ∈ NP}.

Some co-NP-complete problems:

– Complement of any NP-complete problem.

– TAUTOLOGY = {ϕ : ∀a ϕ(a) = 1} (even for 3-DNF formulas ϕ).

Believed that NP 6= co-NP, P 6= NP∩ co-NP.

Between P and NP-complete

Theorem: If P 6= NP, then there are NP languages that are neither in P nor NP-complete.

Proof: beyond the scope of this course.

Some natural candidates:

– FACTORING (when described as a language)

– NASH EQUILIBRIUM

– GRAPH ISOMORPHISM

– Any problem in NP∩ co-NP for which we don’t know a poly-time algorithm.

Lecture 15 15-5

15.4 Two Possible Worlds

The World If P 6= NP

P
NP co-NP

NP-complete co-NP-complete

Recursive r.e. co-r.e.

The World If P = NP

P =

NP =

co-NP =

NP-complete

Recursive

r.e. co-r.e.

