CS125 Lecture 15 Fall 2014

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete

e Already know SAT € NP, so only need to show SAT is NP-hard.

e Let L be any language in NP. Let M be a NTM that decides L in time n*.

We define a polynomial-time reduction
fi : inputs — formulas

such that for every w,

M accepts input w iff f7(w) is satisfiable
Reduction via “computation histories”

Proof Idea: satisfying assignments of f (w) <> accepting computations of M on w

Describe computations of M by boolean variables:

, then any computation of M on w has at most n¥ configurations.

-Ifn=|w

— Each configuration is an element of C"', where C = QUT U {#}
(mark left and right ends with {#}).

k <

~+ computation depicted by n* x n* “tableau” of members of C.

- Represent contents of cell (i, j) by |C| boolean variables {x; j ; : s € C}, where x; j ; = 1 means “cell (i, j)
contains s”.

- 0<i,j<n* so|C|-n** boolean variables in all
Subformulas that verify the computation

Express conditions for an accepting computation on w
by boolean formulas:

o Ocii = “for each (i, j), there is exactly one s € C such that x; j ; = 17.

15-1

Lecture 15 15-2

o Oy = “first row equals start configuration on w”

® Oaccept = “last row is an accept configuration on w”

® Omove = “every 2 x 3 window is consistent with the transition function of M”

Completing the proof

Claim: Each of above can be expressed by a formula of size of size O((n*)?) = O(n?*), and can be constructed
in polynomial time from w.

Claim: M has an accepting computation on w if and only if f7. (W) = Qcell A Pstart A Paccept A Pmove has a satisfying
assignment.

Thus w — f7.(w) is a polynomial-time reduction from L to SAT.

Since above holds for every L € NP, SAT is NP-hard, as desired. Bl

Lecture 15

15.2 Towards Resolving P vs. NP

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS
P vs NP Problem * The Millennium Problems
» Official Problem Description —
Suppose that you are organizing housing accommodations for a group of four Stephen Cook
hundred university students. Space is limited and only one hundred of the * Lecture by Vijaya Ramachandran

students will receive places in the dormitory. To complicate matters, the Dean

at University of Texas (video)

has provided you with a list of pairs of incompatible students, and requested * Minesweeper

that no pair from this list appear in your final choice. This is an example of what
computer scientists call an NP-problem, since it is easy to check if a given choice
of one hundred students proposed by a coworker is satisfactory (i.e., no pair
taken from your coworker's list also appears on the list from the Dean's office),
however the task of generating such a list from scratch seems to be so hard as
to be completely impractical. Indeed, the total number of ways of choosing one
hundred students from the four hundred applicants is greater than the number
of atoms in the known universe! Thus no future civilization could ever hope to
build a supercomputer capable of solving the problem by brute force; that is, by
checking every possible combination of 100 students. However, this apparent
difficulty may only reflect the lack of ingenuity of your programmer. In fact, one
of the outstanding problems in computer science is determining whether
questions exist whose answer can be quickly checked, but which require an
impossibly long time to solve by any direct procedure. Problems like the one
listed above certainly seem to be of this kind, but so far no one has managed to
prove that any of them really are so hard as they appear, i.e., that there really
is no feasible way to generate an answer with the help of a computer. Stephen
Cook and Leonid Levin formulated the P (i.e., easy to find) versus NP (i.e., easy
to check) problem independently in 1971.

A Proof That P Is Not Equal To NP?

AUGUST 8, 2010

by rjlipton

A serious proof that claims to have resolved the P=NP question.

Vinay Deolalikar is a Principal Research Scientist at HP Labs who has done
important research in various areas of networks. He also has worked on
complexity theory, including previous work on infinite versions of the P=NP
question. He has just claimed that he has a proof that P is not equal to NP.
That’s right: 7 % N P. No infinite version. The real deal.

Today I will talk about his paper. So far I have only had a chance to glance at
the paper; I will look at it more carefully in the future. I do not know what to
think right now, but I am certainly hopeful.

The Paper

tags: P=NP, Proof

15-3

Lecture 15 15-4

Fatal Flaws in Deolalikar’s Proof?

AUGUST 12, 2010

by rjlipton tags: finite model theory, flaws, Inmerman, P+NP, Proof

Possible fatal flaws in the finite model part of Deolalikar’s proof

Neil Immerman is one of the world’s experts on Finite Model Theory. He
used insights from this area to co-discover the great result that | QG is
closed under complement.

Today I had planned not to discuss the proof, but I just received a note from

Neil on Vinay Deolalikar “proof” that P-#NP. Neil points out two flaws in the
finite model part that sound extremely damaging to me. He has already
shared them with Vinay, and suggested that I highlight them here. The comments from Neil are in
the next section—I have only edited it slightly to make it “compile.”

15.3 Around and Within NP

co-NP

co-NP = {L: L € NP}.

Some co-NP-complete problems:

— Complement of any NP-complete problem.

— TAUTOLOGY = {¢: Va ¢(a) = 1} (even for 3-DNF formulas ¢).

Believed that NP # co-NP, P = NP N co-NP.
Between P and NP-complete

Theorem: If P # NP, then there are NP languages that are neither in P nor NP-complete.

Proof: beyond the scope of this course.

Some natural candidates:

FACTORING (when described as a language)

NASH EQUILIBRIUM

GRAPH ISOMORPHISM

Any problem in NP N co-NP for which we don’t know a poly-time algorithm.

Lecture 15

15.4 Two Possible Worlds

The World If P £ NP
7 e
co-r.¢. Recursive r.c.
bl

co-NP-completg NP-complete

The World If P = NP

colr.e. >< r.f.

Recursive

15-5

