
CS124 Lecture 3 Fall 2015

Disjoint set (Union-Find)

For Kruskal’s algorithm for the minimum spanning tree problem, we found that we needed a data structure for

maintaining a collection of disjoint sets. That is, we need a data structure that can handle the following operations:

• MAKESET(x) - create a new set containing the single element x

• UNION(x,y) - replace two sets containing x and y by their union.

• FIND(x) - return the name of the set containing the element x

Naturally, this data structure is useful in other situations, so we shall consider its implementation in some detail.

Within our data structure, each set is represented by a tree, so that each element points to a parent in the tree.

The root of each tree will point to itself. In fact, we shall use the root of the tree as the name of the set itself; hence

the name of each set is given by a canonical element, namely the root of the associated tree.

It is convenient to add a fourth operation LINK(x,y) to the above, where we require for LINK that x and y are

two roots. LINK changes the parent pointer of one of the roots, say x, and makes it point to y. It returns the root

of the now composite tree y. With this addition, we have UNION(x,y) = LINK(FIND(x),FIND(y)), so the main

problem is to arrange our data structure so that FIND operations are very efficient.

Notice that the time to do a FIND operation on an element corresponds to its depth in the tree. Hence our goal is

to keep the trees short. Two well-known heuristics for keeping trees short in this setting are UNION BY RANK and

PATH COMPRESSION. We start with the UNION BY RANK heuristic. The idea of UNION BY RANK is to ensure

that when we combine two trees, we try to keep the overall depth of the resulting tree small. This is implemented as

follows: the rank of an element x is initialized to 0 by MAKESET. An element’s rank is only updated by the LINK

operation. If x and y have the same rank r, then invoking LINK(x,y) causes the parent pointer of x to be updated to

point to y, and the rank of y is then updated to r+ 1. On the other hand, if x and y have different rank, then when

invoking LINK(x,y) the parent point of the element with smaller rank is updated to point to the element with larger

rank. The idea is that the rank of the root is associated with the depth of the tree, so this process keeps the depth

small. (Exercise: Try some examples by hand with and without using the UNION BY RANK heuristic.)

3-1



Lecture 3 3-2

The idea of PATH COMPRESSION is that, once we perform a FIND on some element, we should adjust its

parent pointer so that it points directly to the root; that way, if we ever do another FIND on it, we start out much

closer to the root. Note that, until we do a FIND on an element, it might not be worth the effort to update its parent

pointer, since we may never access it at all. Once we access an item, however, we must walk through every pointer

to the root, so modifying the pointers only changes the cost of this walk by a constant factor.

procedure MAKESET(x)
p(x) := x
rank(x) := 0

end

function FIND(x)
if x 6= p(x) then

p(x) := FIND(p(x))
return(p(x))

end

function LINK(x,y)
if rank(x)> rank(y) then x↔ y
if rank(x) = rank(y) then rank(y) := rank(y)+1
p(x) := y
return(y)

end

procedure UNION(x,y)
LINK(FIND(x),FIND(y))

end

In our analysis, we show that any sequence of m UNION and FIND operations on n elements take at most

O((m+ n) log∗ n) steps, where log∗ n is the number of times you must iterate the log2 function on n before getting

a number less than or equal to 1. (So log∗ 4 = 2, log∗ 16 = 3, log∗ 65536 = 4.) We should note that this is not the

tightest analysis possible; however, this analysis is already somewhat complex!

Note that we are going to do an amortized analysis here. That is, we are going to consider the cost of the

algorithm over a sequence of steps, instead of considering the cost of a single operation. In fact a single UNION or

FIND operation could require O(logn) operations. (Exercise: Prove this!) Only by considering an entire sequence



Lecture 3 3-3

of operations at once can obtain the above bound. Our argument will require some interesting accounting to total the

cost of a sequence of steps.

We first make a few observations about rank.

• if v 6= p(v) then rank(p(v))> rank(v)

• whenever p(v) is updated, rank(p(v)) increases

• the number of elements with rank k is at most n
2k

• the number of elements with rank at least k is at most n
2k−1

The first two assertions are immediate from the description of the algorithm. The third assertion follows from

the fact that the rank of an element v changes only if LINK(v,w) is executed, rank(v) = rank(w), and v remains

the root of the combined tree; in this case v’s rank is incremented by 1. A simple induction then yields that when

rank(v) is incremented to k, the resulting tree has at least 2k elements. The last assertion then follows from the third

assertion, as ∑
∞
j=k

n
2 j =

n
2k−1 .

Exercise: Show that the maximum rank an item can have is logn.

As soon as an element becomes a non-root, its rank is fixed. Let us divide the (non-root) elements into groups

according to their ranks. Group i contains all elements whose rank r satisfies log∗ r = i. For example, elements in

group 3 have ranks in the range (4,16], and the range of ranks associated with group i is (2i−1,22i−1
). For convenience

we shall write this more simply by saying group (k,2k] to mean the group with these ranks.

It is easy to establish the following assertions about these groups:

• The number of distinct groups is at most log∗ n. (Use the fact that the maximum rank is logn.)

• The number of elements in the group (k,2k] is at most n
2k .

Let us assign 2k tokens to each element in group (k,2k]. The total number of tokens assigned to all elements

from that group is then at most 2k n
2k = n, and the total number of groups is at most log∗ n, so the total number of

tokens given out is n log∗ n. We use these tokens to account for the work done by FIND operations.

Recall that the number of steps for a FIND operation is proportional to the number of pointers that the FIND

operation must follow up the tree. We separate the pointers into two groups, depending on the groups of u and

p(u) = v, as follows:



Lecture 3 3-4

• Type 1: a pointer is of Type 1 if u and v belong to different groups, or v is the root.

• Type 2: a pointer is of Type 2 if u and v belong to the same group.

We account for the two Types of pointers in two different ways. Type 1 links are “charged” directly to the FIND

operation; Type 2 links are “charged” to u, who “pays” for the operation using one of the tokens. Let us consider

these charges more carefully.

The number of Type 1 links each FIND operation goes through is at most log∗ n, since there are only log∗ n

groups, and the group number increases as we move up the tree.

What about Type 2 links? We charge these links directly back to u, who is supposed to pay for them with a

token. Does u have enough tokens? The point here is that each time a FIND operation goes through an element u,

its parent pointer is changed to the current root of the tree (by PATH COMPRESSION), so the rank of its parent

increases by at least 1. If u is in the group (k,2k], then the rank of u’s parent can increase fewer than 2k times before

it moves to a higher group. Therefore the 2k tokens we assign to u are sufficient to pay for all FIND operations that

go through u to a parent in the same group.

We now count the total number of steps for m UNION and FIND operations. Clearly LINK requires just O(1)

steps, and since a UNION operation is just a LINK and 2 FIND operations, it suffices to bound the time for at most

2m FIND OPERATIONS. Each FIND operation is charged at most log∗ n for a total of O(m log∗ n). The total number

of tokens used at most n log∗ n, and each token pays for a constant number of steps. Therefore the total number of

steps is O((m+n) log∗ n).

Let us give a more equation-oriented explanation. The total time spent over the course of m UNION and FIND

operations is just

∑
all FIND ops

(# links passed through).

We split this sum up into two parts:

∑
all FIND ops

(# links in same group)+ ∑
all FIND ops

(# links in different groups).

(Technically, the case where a link goes to the root should be handled explicitly; however, this is just O(m) links in

total, so we don’t need to worry!) The second term is clearly O(m log∗ n). The first term can be upper bounded by:

∑
all elements u

(# ranks in the group of u),



Lecture 3 3-5

because each element u can be charged only once for each rank in its group. (Note here that this is because the links

to the root count in the second sum!) This last sum is bounded above by

∑
all groups

(# items in group) · (# ranks in group)≤
log∗ n

∑
k=1

n
2k 2k ≤ n log∗ n.

This completes the proof.

x y y

x

a

b

c

d

UNION(x,y)

FIND(d)

a

b c d

Figure 3.1: Examples of UNION BY RANK and PATH COMPRESSION.


