CS125 Lecture 8 Fall 2014

8.1 Introduction

Today we’ll talk about shortest path algorithms. There are 3 main variations of the shortest path problem on graphs:
the point-to-point shortest path problem (find the shortest path from s to ¢ for given s to ¢); the single source shortest
path problem (find the shortest path from a given source s to all other vertices); and the all pairs shortest path
problem (find the shortest path between all pairs). Shortest path problems — particularly point-to-point problems
— have become very important of late. Just think about whatever online mapping service you like to use. We’ll
actually focus on single source and all-pairs algorithms; these are often used in subroutines in various ways, even

for point-to-point problems.

Background: Breadth First Search

Breadth First Search (BFS) is a way of exploring the part of the graph that is reachable from a particular vertex

(s in the algorithm below).

Procedure BFS (G(V,E),s € V)
graph G(V,E)
array[|V|] of integers dist
queue q;
dist[s] :=0
inject(g, s)
placed(s) ;=1
while size(g) > 0
v :=pop(q)
previsit(v)
for (v,w) € E
if placed(w) = 0 then
inject(gq, w)
placed(w) :=1
dist(w) = dist(v)+1
fi
rof
end while
end BFS

8-1

8-2

BFS visits vertices in order of increasing distance from s. In fact, our BFS algorithm above labels each vertex
with the distance from s, or the number of edges in the shortest path from s to the vertex. For example, applied to

the graph in Figure 8.1, this algorithm labels the vertices (by the array dist) as shown.

Why are we sure that the array dist is the shortest-path distance from s? A simple induction proof suffices. It
is certainly true if the distance is zero (this happens only at s). And, if it is true for dist(v) = d, then it can be easily
shown to be true for values of dist equal to d + 1 —any vertex that receives this value has an edge from a vertex with
dist d, and from no vertex with lower value of dist. Notice that vertices not reachable from s will not be visited or

labeled.

2 3

Figure 8.1: BFS of a directed graph

BFS runs, of course, in linear time O(|E

), under the assumption that |E| > |V|. The reason is that BFS visits

each edge exactly once, and does a constant amount of work per edge.

Single-Source Shortest Paths —Nonnegative Lengths

What if each edge (v,w) of our graph has a length, a positive integer denoted length(v,w), and we wish to find
the shortest paths from s to all vertices reachable from it? BFS offers a possible solution. We can subdivide each
edge (u,v) into length(u,v) edges, by inserting length(u,v) — 1 “dummy” nodes, and then apply BFS to the new
graph. This algorithm solves the shortest-path problem in time O(Y(,,)< length(u,v)). Unfortunately, this can be

very large —lengths could be in the thousands or millions. So we need to find a better way.

The problem is that this BFS-based algorithm will spend most of its time visiting “dummy” vertices; only

8-3

occasionally will it do something truly interesting, like visit a vertex of the original graph. What we would like to

do is run this algorithm, but only do work for the “interesting” steps.

To do this, We need to generalize BEFS. Instead of using a queue, we will instead use a heap or priority queue of
vertices. As we have seen, a heap is a data structure that keeps a set of objects, where each object has an associated

value. The operations a heap H implements include the following:

deletemin(H) return the object with the smallest value
insert(x,y, H) insert a new object x/value y pair in the structure
change(x,y, H) if y is smaller than x’s current value,

change the value of object x to y

Each entry in the heap will stand for a projected future “interesting event” of our extended BFS. Each entry will
correspond to a vertex, and its value will be the current projected time at which we will reach the vertex. Another
way to think of this is to imagine that, each time we reach a new vertex, we can send an explorer down each adjacent
edge, and this explorer moves at a rate of 1 unit distance per second. With our heap, we will keep track of when each
vertex is due to be reached for the first time by some explorer. Note that the projected time until we reach a vertex
can decrease, because the new explorers that arise when we reach a newly explored vertex could reach a vertex first
(see node b in Figure 8.2). But one thing is certain: the most imminent future scheduled arrival of an explorer must
happen, because there is no other explorer who can reach any vertex faster. The heap conveniently delivers this most

imminent event to us.

As in all shortest path algorithms we shall see, we maintain two arrays indexed by V. The first array, dist[v],
will eventually contain the true distance of v from s. The other array, prev[v], will contain the last node before v in
the shortest path from s to v. Our algorithm maintains a useful invariant property: at all times dist[v] will contain a
conservative over-estimate of the true shortest distance of v from s. Of course dist|s] is initialized to its true value 0,
and all other dist’s are initialized to oo, which is a remarkably conservative overestimate. The algorithm is known as

Djikstra’s algorithm, named after the inventor.

Algorithm Djikstra (G = (V, E,length); s € V)
v, w: vertices
dist: array[V] of integer
prev: array[V] of vertices
H: priority heap of V
H:={s:0}
forveVdo
dist[v] := o, prev[v] :=nil

Figure 8.2: Shortest paths

rof
dist[s] :=0
while H # 0
v := deletemin(h)
for (v,w) € E
if dist[w] > dist[v]+ length(v,w)
dist[w] := dist[v] + length(v,w), prev[w] := v, insert(w,dist[w], H)
fi
rof

end while end shortest paths 1

The algorithm, run on the graph in Figure 8.2, will yield the following heap contents (node: dist/priority pairs)
at the beginning of the while loop: {s:0},{a:2,b:6},{b:5,c:3},{b:4,e:7,f:5},{e:7,f:5,d:6},{e:6,d:6},
{e: 6}, {}. The distances from s are shown in Figure 2, together with the shortest path tree from s, the rooted tree

defined by the pointers prev.

What is the running time of this algorithm? The algorithm involves |E| insert operations and |V| deletemin
operations on H, and so the running time depends on the implementation of the heap H. There are many ways to
implement a heap. Even an unsophisticated implementation as a linked list of node/priority pairs yields an interesting

time bound, O(|V|?) (see first line of the table below). A binary heap would give O(|E|log|V|).

Which of the two should we prefer? The answer depends on how dense or sparse our graphs are. In all graphs,

v[?

|E| is between |V| and |[V|?. If it is Q(|V|?), then we should use the linked list version. If it is anywhere below gV

we should use binary heaps.

8-5

Single-Source Shortest Paths: General Lengths

Our argument of correctness of our shortest path algorithm was based on the “time metaphor:” the most im-
minent prospective event (arrival of an explorer) must take place, exactly because it is the most imminent. This
however would not work if we had negative edges. (Imagine explorers being able to arrive before they left!) If the
length of edge (a,b) in Figure 2 were —1, the shortest path from s to » would have value 1, not 4, and our simple
algorithm fails. Obviously, with negative lengths we need more involved algorithms, which repeatedly update the

values of dist.

We can describe a general paradigm for constructing shortest path algorithms with arbitrary edge weights. The
algorithms use arrays dist and prev, and again we maintain the invariant that dist is always a conservative overestimate

of the true distance from s. (Again, dist is initialized to o for all nodes, except for s for which it is 0).

The algorithms maintain dist so that it is always a conservative overestimate; it will only update the a value
when a suitable path is discovered to show that the overestimate can be lowered. That is, suppose we find a neighbor
w of v, with dist[v] > dist{w] + length(w,v). Then we have found an actual path that shows the distance estimate is

too conservative. We therefore repeatedly apply the following update rule.

procedure update ((w,v))
edge (w,v)
if dist[v] > dist[w]+ length(w,v) then
dist[v] := dist[w] + length(w,v), prev[v] :=w

A crucial observation is that this procedure is safe, in that it never invalidates our “invariant” that dist is a

conservative overestimate.

The key idea is to consider how these updates along edges should occur. In Djikstra’s algorithm, the edges are

updated according to the time order of the imaginary explorers. But this only works with positive edge lengths.

A second crucial observation concerns how many updates we have to do. Let a # s be a node, and consider the
shortest path from s to a, say s,vy,Vvy, ...,V = a for some k between 1 and n— 1. If we perform update first on (s,vy),
later on (vq,v7), and so on, and finally on (vx_1,a), then we are sure that dist(a) contains the true distance from s
to a, and that the true shortest path is encoded in prev. (Exercise: Prove this, by induction.) We must thus find a
sequence of updates that guarantee that these edges are updated in this order. We don’t care if these or other edges
are updated several times in between, since all we need is to have a sequence of updates that contains this particular

subsequence. There is a very easy way to guarantee this: update all edges |V| — 1 times in a row!

Algorithm Shortest Paths 2 (G = (V, E,length); s € V)

8-6

v, w: vertices
dist: array[V] of integer
prev: array[V] of vertices
i: integer
forveVdo
dist[v] := o, prev|[v] :=nil
rof
dist[s] :=0
fori=1...n—1
for (w,v) € E update(w,v)
end shortest paths 2

This algorithm solves the general single-source shortest path problem in O(|V|- |E|) time.

Negative Cycles

In fact, there is a further problem that negative edges can cause. Suppose the length of edge (b,a) in Figure 2
were changed to —5. The the graph would have a negative cycle (from a to b and back). On such graphs, it does not
make sense to even ask the shortest path question. What is the shortest path from s to ¢ in the modified graph? The
one that goes directly from s to a to ¢ (cost: 3), or the one that goes from s to a to b to a to ¢ (cost: 1), or the one that

takes the cycle twice (cost: -1)? And so on.

The shortest path problem is ill-posed in graphs with negative cycles. It makes no sense and deserves no
answer. Our algorithm in the previous section works only in the absence of negative cycles. (Where did we assume
no negative cycles in our correctness argument? Answer: When we asserted that a shortest path from s to a exists!)
But it would be useful if our algorithm were able to defect whether there is a negative cycle in the graph, and thus to

report reliably on the meaningfulness of the shortest path answers it provides.

This is easily done. After the |V|— 1 rounds of updates of all edges, do a last update. If any changes occur
during this last round of updates, there is a negative cycle. This must be true, because if there were no negative

cycles, |V| — 1 rounds of updates would have been sufficient to find the shortest paths.

Shortest Paths on DAG’s

There are two subclasses of weighted graphs that automatically exclude the possibility of negative cycles:
graphs with non-negative weights and DAG’s. We have already seen that there is a fast algorithm when the weights

are non-negative. Here we will give a linear algorithm for single-source shortest paths in DAG’s.

8-7

Our algorithm is based on the same principle as our algorithm for negative weights. We are trying to find a
sequence of updates, such that all shortest paths are its subsequences. But in a DAG we know that all shortest paths
from s must go in the topological order of the DAG. All we have to do then is first topologically sort the DAG using
a DFS, and then visit all edges coming out of nodes in the topological order. This algorithm solves the general

single-source shortest path problem for DAG’s in O(m) time.

8.2 All pairs shortest paths via dynamic programming

Let G be a graph with positive edge weights. We want to calculate the shortest paths between every pair of nodes.
One way to do this is to run Dijkstra’s algorithm several times, once for each node. Here we develop a different

dynamic programming solution.

Our subproblems will be shortest paths using only nodes 1...k as intermediate nodes. Of course when k equals

the number of nodes in the graph, n, we will have solved the original problem.

We let the matrix Dyli. j] represent the length of the shortest path between i and j using intermediate nodes 1.. .k.
Initially, we set a matrix Do with the direct distances between nodes, given by d;;. Then Dy is easily computed from

the subproblems Dj_ as follows:

Dk[i,j] = min(Dk_l [i,j],Dk_l [i,k] + Dy [k,]])

The idea is the shortest path using intermediate nodes 1...k either completely avoids node &, in which case it
has the same length as Dy_1[i, j]; or it goes through k, in which case we can glue together the shortest paths found

from i to k and & to j using only intermediate nodes 1...k— 1 to find it.

It might seem that we need at least two matrices to code this, but in fact it can all be done in one loop. (Exercise:

think about it!)

D = (d;;), distance array, with weights from all i to all j
fork=1tondo
fori=1tondo
for j=1tondo
Dli, j| = min(D[i, j], D[i.k| + D[k, j])

8-8

Note that again we can keep an auxiliary array to recall the actual paths. We simply keep track of the last
intermediate node found on the path from i to j. We reconstruct the path by successively reconstructing intermediate

nodes, until we reach the ends.

Some Pointers on Point-to-Point Algorithms

Naturally, one can use Dijkstra’s algorithm to solve the point-to-point shortest paths problem. Indeed, for non-
negative distances, one can stop as soon as the other point is taken off the priority queue. But for real speed, one can
optimize in various ways, or use alternative methods. Here are just a few ideas that have been used in algorithms for

this problem.

o Bidirectional Dijkstra’s algorithm: start searches from s and f and alternate between them, and terminate when
the searches meet in the middle. The stopping criterion is not trivial. The idea is that if the graph branches a

lot, two “small” searches might require less exploration than one large one.

e Changing ditances with potential functions: one can associated a potential T(x) with each vertex x and change
each distance d(u,v) to d(u,v) +n(v) —m(u). If w(s) = 0 for the source vertex and the new distances are
nonnegative, then the shortest paths remain the same (check why) and Dijkstra’s algorithm can still be used.

Clever choices of potential functions can speed up the algorithm.

e Using landmarks and precomputation: by precomputing the distance between a small collection of landmark
locations and nearby points, and precomputing all-pairs shortest paths between landmarks, one can quickly
determine an upper bound on the shortest path between two points: add up the distance from the start point
to its nearest landmark, the distance from the end point to its nearest landmark, and the distance between
landmarks. Using this information, one can prune Djikstra’s algorithm wehn finding point-to-point shortest

paths.

e Hierarchical methods: In real world networks, there are often natural partitions of the underlying space. For
example, for a long trip, it may be clear that first you have to get on a highway, then take the highway, then
get off the highway. To cross a body of water, you may have to go through one of a small number of bridges.

Taking advantage of such hierarchical features can speed up calculations.

Sections 1-3 of the survey at http://research.microsoft.com/pubs/207102/MSR-TR-2014-4.
pdf has a lot of good background on this problem. (The rest of the survey examines the problem of traveling via

public transport, where timetables are involved.)

