CS125 Lecture 13 Fall 2016

13.1 Nondeterministic Polynomial Time

Now we turn to incorporating nondeterminism in universal models of computation, namely Turing Machines and

Word-RAMs.

For Nondeterministic Turing machines, we do it just like for NFAs, now allowing multiple transitions on each

state-symbol pair. That is, we allow the transition function to be a mapping 8: Q xI' — P(Q x ' x {L,R}).
The generalization of computation is also analogous to what we did for NFAs.
e For a configuration C = ugov (where u,v € I'*,q € 0,0 € I'), we write C =, C’ for every configuration C’ that

can be obtained by applying one of the transitions in the set 8(¢,5) to C. (So C’ is not uniquely determined by
C)

e AnNTMM = (Q,%,T,8,q0,F) accepts w € £* if there exists a sequence Cy, . . .,C; of configurations such that

- Co = qow,

- Ci_1=>yCiforeachi=1,...,t,and

— In G, M is in state gy, and the contents of the tape to the left of the first blank symbol is the symbol 1.
e For an NTM M, the language recognized by M is L(M) = {w : M accepts w}. That is, for every w € L(M),

there is at least one accepting computation path of M. And for every w ¢ L(M), all computation paths either

halt in a non-accepting configuration or run forever.
e An NTM M decides alanguage L if L(M) = L and M has no infinite computation paths. (So M halts on every
input and every computation path, without loss of generality always having an output of 1 or 0.)
Note that the only types of computational problem we consider for nondeterministic algorithms are decision prob-
lems (i.e. languages).
One way to incorporate nondeterminism into the Word-RAM model is via the GOTO command:

e We allow instructions of the form “IF R[i] = 0 GOTO /¢,, {5, {3, ..., or £;.” (Each choice yields a distinct

computation path.)

13-1

Lecture 13 13-2

e For a configuration C = (¢,S,w,R, M) of a word-RAM program P in which P, is such a GOTO command, there

may be k different configurations C' = (¢',S,w, R, M) such that C = p C’, namely ones for each ¢’ € {¢y,... ¢ }.

For the next few lectures, we will be focused on the extent to which nondeterminism increases the power of

polynomial-time algorithms:

Definition 13.1 The running time T (n) of a nondeterministic algorithm A (whether a TM or a Word-RAM) is the

maximum number of steps to reach a halting configuration over all inputs of length n and all computation paths.

NTIME(T (n)) is the class of languages decided by algorithms running in time O(T (n)), and nondeterministic
polynomial time is the class

NP = NTIME(n®).

c

It can be verified that the polynomial equivalence we proved between TMs and Word-RAMs extends to their non-
deterministic analogues, so the class NP does not depend on which model we use, but the finer classes NTIME(n®)

might depend on the model.
An Example: Travelling Salesman Problem

Clearly P C NP. But there are problems in NP that are not obviously in P (# “obviously not”). Such as the TRAV-

ELLING SALESMAN PROBLEM:

e Let m > 0 be the number of cities,

e Let D be an m x m matrix of nonnegative real numbers giving the distance D(i, j) between city i and city j,

and

e let B be a distance bound

Then
TSP = {(m,D,B) : 3 tour of all cities of length < B}.

To illustrate:

Lecture 13 13-3

“tour” = visits every city and returns to starting point

There are many variants of TSP, eg require visiting every city exactly once, triangle inequality on distances...

Proposition 13.2 TSP € NP

Proof: If (m,D,B) € TSP, the following nondeterministic algorithm will accept in time O(n?), where n = length of

representation of (m,D,B).

— nondeterministically write down a sequence of cities ¢y, ...,c;, for t < m?. (“guess”)

— trace through that tour and verify that all cities are visited and the length is < B. If so, halt in gaccept- If not,

halt in dreject: (and ““check™)

Conversely, if (m,D,B) ¢ TSP, above has no accepting computations. []

But we do not know if TSP € P. Indeed, all known deterministic algorithms for TSP take exponential time (in

the worst case).

Lecture 13 13-4

A useful characterization of NP

Def: A verifier for a language L is a (deterministic) algorithm V such that L = {x: V accepts (x,y) for some string y}.

Def: A polynomial-time verifier is one that runs in time polynomial in |x| on input (x,y).

A string y that makes V ({x,y)) accept is a “proof™ or “certificate” that x € L.

Example: TSP

certificate y = the sequence cy,...,c; of cities from the proof of Proposition 13.2.

V({x,y)) will check that this sequence indeed gives a tour, and the total cost is at most B.

N.B. Without loss of generality, |y| is at most polynomial in |x].

Theorem 13.3 NP equals the class of languages with polynomial-time verifiers.

Proof:

Suppose L has a poly-time verifier V which runs in time at most 7'(n) < Cn* for some constant C,k > 0. Then
our NTM M will nondeterministically guess a witness y of length at most Cr*, halt with the output of V(x,y)

(that is, accepting iff V (x,y) = 1).

Suppose L is in NP. Then there is an NTM M deciding L. Over the course of running M on some input x of
length 12, M runs for at most Cn* steps. Our verifier V then works as follows. The witness y will be a sequence
of at most Cr* triples (¢,0,D) where D € {L,R}, corresponding to transitions of the Turing Machine. The
jth triple tells us which element of the output of the transition function 8 we should take in the jth step when
running M on x, i.e. it specifies one computation path for M running on x. The verifier V verifies that y
represents a valid sequence of transitions as per the description of M and the input x, and returns 1 iff this

computation path leads to M accepting x.

Lecture 13

13-5

“L is in NP iff members of L have short, efficiently verifiable certificates”

More problems in NP

o Lyt = {(N,M) : N has a factor in {2,3,...,M}}.

As an exercise, try to show that that this language is in P iff there is a polynomial-time algorithm for
FACTORING. It is conjectured that no such algorithm exists (and indeed, much cryptography in use relies
on this conjecture.) Recall that here we are talking about time polynomial in the length of the input, i.e.
time poly(logN).

However, it is easy to see that Lg,. € NP: the witness is simply the factor.

e For contrast, the very related language NONPRIMES = {(N) : N has a factor in {2,...,N —1}} is known to

be in P! This is not an an easy result; it was only shown fairly recently in the 2000’s [AgrawalKS04].

It is easier to see the following. First note NONPRIMES is in NP since a witness is simply a nontrivial
factor of N. This means that the complement language PRIMES = {(N) : N is a prime integer} is in a
complexity class called co-NP. co-NP is the class of languages L for which there is a poly-time verifier
V such that L = {x: Vy, V(x,y) = 0} (V runs in time polynomial in |x|). That is, there is no witness

convincing V that x is in the language.

An easier thing to showing NONPRIMES € P is to show that PRIMES € NPSo in fact it is in NP N
co-NP! The fact that it is in NP was first shown by Vaughan Pratt in 1975.

The idea to show that it is in NP is to use Lehmer’s theorem (which we won’t prove here — it uses
algebra, so if you want to know more then take MATH 122). Lehmer’s theorem states that N is prime
iff there exists an integer 1 < a < N such that (1) a¥ ! =1 (mod N), and (2) for all prime divisors g of

N —1, aW=1/4 is not equivalent to 1 mod N.

If you take Lehmer’s theorem as a black box, then the Pratt certificate simply lists a together with all the
prime divisors py,...,pr of N — 1. It then recursively lists such a certificate for each of these divisors
p1,---, Pk (to convince the verifier that these p; are in fact prime), so that there is in fact a certificate
“tree”. The base case of the recursion, or leaves of the tree, correspond to p; = 2. One can show by

induction on n > 3 that the number of non-leaf nodes in the tree rooted at n is at most 4logn — 4 for

Lecture 13 13-6

n > 3. Note also that each p; and a take at most O(logN) bits to write down, and thus the total size of

the certificate is O(log? N), which is polynomial in the binary encoding of N, which takes O(log N) bits.

— The verifier checks (1) and (2) given the certificate, and for each prime divisor g of N, the verifier
recursively checks that ¢ is prime given the information in the certificate. Note that ¥ mod N can
be computed in O(logk) multiplications by repeated squaring. In particular if we write k in binary as
k=Y jes 27, then a* mod n = aics Y modn = [Tjes a* mod n. We can form all these powers a* modulo

n by repeated squaring, and there are at most log, k of them of interest.
e HAMILTONIAN CIRCUIT

HC = {G : G an undirected graph with a circuit that touches each node exactly once}.

HC No HC

Really just a special case of TSP. (why?) (Recall that we are not fussy about the precise method of represent-

ing a graph as a string, because all reasonable methods are within a polynomial of each other in length.)

For nearly 50 years, the best known algorithm for Hamiltonian Cycle detection was the O(n*2") dynamic
programming algorithm we saw earlier in the course, due independently to Bellman, and to Held and Karp,
both in 1962. An improvement was only made very recently by Bjorklund [Bjorklund10] O(r*1.657") (which
is of course O(1.658")). In the case the graph is bipartite, he gave a further improved bound to O(n*1.414").
For the TSP problem though, nothing is known better than O(n¥2"). An open research problem: can TSP be
solved in time 0(1.999999")?

All known algorithms for HC take exponential time, so we might conjecture that HC ¢ P. But consider the

very similar problem EULERIAN CIRCUIT:

EC = {G: G is an undirected graph with a circuit that passes through each edge exactly once}

Lecture 13 13-7

It turns out that G is Eulerian iff G is connected and every vertex has even degree! (Proven in AM107.) So

EC e P.
o SATISFIABILITY

Def: A Boolean formula (B.F.) is recursively defined as any of the following:

- a “Boolean variable” x,y,z,...
- (Vv B) where o, 3 are B.F.’s.
- (aAB) where o, B are B.F.’s.

- =0, where ot is a B.F.

e.g. (xVyVz)A(—xV-yV-z)
[Omitting redundant parentheses]

Given a boolean formula ¢ and a truth assignment @ : Boolean variables — {0, 1}, the evaluation @(a) is

defined in the natural way using the rules of boolean logic.

Prop: SAT = {¢: @ a B.F. such that 3a ¢(a) = 1} is in NP.

13.2 The P vs. NP Problem

We would like to solve problems in NP efficiently.

We know P C NP.

Problems in P can be solved “fairly” quickly.

What is the relationship between P and NP?
NP and Exponential Time

Claim: NP C UTIME(2"")
k

Proof: If L € NP, then L € NTIME(rX) for some k. If NDTM M decides L in time r, then the standard

simulation of M by a DTM runs in time O(C”M).

(Check the o computations, each of length n%).

Lecture 13 13-8

Of course, this gets us nowhere near P. Does P = NP? That is, do all the NP problems have polynomial time

algorithms? It doesn’t “feel” that way but as of today there is no NP problem that has been proven to require

exponential time!

The Strange, Strange World if P = NP

Thousands of important languages can be decided in polynomial time, e.g.

SATISFIABILITY

TRAVELLING SALESMAN

HAMILTONIAN CIRCUIT

MAP COLORING

If P = NP, then Searching becomes easy

Every “reasonable” search problem could be solved in polynomial time.

“reasonable” = solutions can be recognized in polynomial time (and are of polynomial length)

SAT SEARCH: Given a satisfiable boolean formula, find a satisfying assignment.

FACTORING: Given a natural number (in binary), find its prime factorization.

NASH EQUILIBRIUM: Given a two-player “game”, find a Nash equilibrium.

If P = NP, Optimization becomes easy

Every “reasonable” optimization problem can be solved in polynomial time.

Optimization problem = “maximize (or minimize) f(x) subject to certain constraints on x” (AM 121)

— “Reasonable” = “f and constraints are poly-time”

MIN-TSP: Given a TSP instance, find the shortest tour.

SCHEDULING: Given a list of assembly-line tasks and dependencies, find the maximum-throughput

scheduling.

Lecture 13 13-9

— PROTEIN FOLDING: Given a protein, find the minimum-energy folding.
— INTEGER LINEAR PROGRAMMING: Like linear programming, but restrict to integer

— CIRCUIT MINIMIZATION: Given a digital circuit, find the smallest equivalent circuit. (Is “reasonable”

if P=NP.)

If P = NP, Secure Cryptography becomes impossible

Every polynomial-time encryption algorithm can be “broken” in polynomial time.

— “Given an encryption z, find the corresponding decryption key K and message m” is an NP search

problem.

— Thus modern cryptography seeks to design encryption algorithms that cannot be broken under the as-

sumption that certain NP problems are hard to solve (e.g. FACTORING).

— Take CS 127.

If P = NP, Artificial Intelligence becomes easy

Machine learning is an NP search problem

— Given many examples of some concept (e.g. pairs (imagel, “dog”), (image2, “person”), ...), classify new

examples correctly.

— Turns out to be equivalent to finding a short “classification rule” consistent with examples.

— Take CS228.

If P = NP, even Mathematics becomes easy!

Mathematical proofs can always be found in polynomial time (in their length).
— SHORT PROOF: Given a mathematical statement S and a number 7 (in unary), decide if S has a proof of
length at most # (and, if so, find one).
— An NP problem!

— cf. letter from Go6del to von Neumann, 1956.

Lecture 13 13-10

Library of Congress

Godel’s Letter to Von Neumann, 1956

[¢(n) = time required for a TM to determine whether a mathematical statement has a proof of length n]

If there really were a machine with ¢(n) ~ k-n (or even ~ k- n?) this would have consequences of the greatest
importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the

mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. ...

It would be interesting to know, for instance, the situation concerning the determination of primality of a number
and how strongly in general the number of steps in finite combinatorial problems can be reduced with respect to

simple exhaustive search. ...

References

[1] Manindra Agrawal, Neeraj Kayal, Nitin Saxena. PRIMES is in P. Annals of Mathematics, 160(2), pages
781-793, 2004.

[2] Andreas Bjorklund. Determinant Sums for Undirected Hamiltonicity. Proceedings of the 51st Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pages 173-182, 2010.

