NP-Completeness

The World if $\mathrm{P} \neq \mathrm{NP}$?

Q: If $\mathrm{P} \neq \mathrm{NP}$, can we conclude anything about any specific problems?
Idea: Try to find a "hardest" NP language.

- Want $L \in \mathrm{NP}$ such that $L \in \mathrm{P}$ iff every NP language is in P .

Reducibility

Informally, we say that a computational problem A reduces to a computational problem B (written $A \leq B$) if A can be solved (efficiently) by solving B. Thus, an (efficient) algorithm for B implies an (efficient) algorithm for A.

We have already seen many examples:

- Context-free Recognition \leq Matrix Multiplication (HW3)
- Max-Flow \leq Linear Programming
- MATChing \leq MAX-FLOw
- Zero-Sum Games \leq Linear Programming
- $L_{\text {fact }} \leq$ FACTORING
- FACTORING $\leq L_{\text {fact }}$

Here $L_{\text {fact }}=\{\langle N, m\rangle: N$ has a factor in $\{2, \ldots, m\}\}$. The last bullet follows since, to factor N, we can iteratively try to find one factor x then recurse on both x and N / x. To find a single factor, we can use a subroutine solving $L_{\text {fact }}$ and binary search on m (recall to be efficient, our running time should be polylogarithmic in N, since the input length is $\lceil\log N\rceil$ bits to write down N). As the last bullet shows, reductions are useful not only for showing that problems can be solved efficiently, but also for giving evidence that problems are hard: under the widely believed
conjecture that Factoring has no polynomial-time algorithm, we can deduce that $L_{\text {fact }} \notin \mathrm{P}$ (and hence $\mathrm{P} \neq \mathrm{NP}$). Hence " $A \leq B$ " can be interpreted equivalently as saying " A is at least as easy as B " or " B is at least as hard as A ".

Polynomial-Time Mapping Reductions

There are many forms of reducibility, and which one is most suitable depends on what kind of computational phenomena we are interested in studying. A very general notion is that of a Turing reduction (aka oracle reduction), where we say that $A \leq B$ if there is an algorithm that solves A given any "black box" that solves B. (For example, we add a Word-RAM instruction that will provide a solution to an instance of B written in memory in one time step. It's like programming with a library for which we have no idea how the the library functions themselves are implemented (or even if they can be implemented at all).) The polynomial-time analogue of Turing reductions are known as Cook reductions, and these are what we used in the reductions between Factoring and $L_{\text {fact }}$.

However, for reductions between languages, it is often convenient to work with the following more restrictive notion of reduction (known as polynomial-time mapping reductions or Karp reductions):

Def: $L_{1} \leq_{P} L_{2}$ iff there is a polynomial-time computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ s.t. for every $x \in \Sigma_{1}^{*}, x \in L$ iff $f(x) \in L_{2}$.

- $x \in L_{1} \Rightarrow f(x) \in L_{2}$
- $x \notin L_{1} \Rightarrow f(x) \notin L_{2}$
- f computable in polynomial time

Proposition: If $L_{1} \leq_{P} L_{2}$ and $L_{2} \in \mathrm{P}$, then $L_{1} \in \mathrm{P}$.

Proof:

Suppose that

- f is a reduction of L_{1} to L_{2} computable in time T_{1}, a polynomial.
- L_{2} is decidable in time T_{2}, a polynomial.

To decide whether $x \in L_{1}$:

1. Compute $f(x)$. [takes time $\left.T_{1}(|x|)\right]$
2. Decide whether $f(x) \in L_{2}$. [takes time $\left.T_{2}(|f(x)|)\right]$

But we know that $|f(x)| \leq T_{1}(|x|)$, since the length of the output of a TM can't be longer than the time in which it runs.

Thus, $T_{2}(|f(x)|) \leq T_{2}\left(T_{1}(|x|)\right)$.
So total time $\leq T_{1}(|x|)+T_{2}\left(T_{1}(|x|)\right)$, a polynomial.

NP-Completeness

Def: L is NP-complete iff

1. $L \in \mathrm{NP}$ and
2. For every $L^{\prime} \in \mathrm{NP}$, we have $L^{\prime} \leq_{P} L$. (" L is $\underline{\mathrm{NP}-\text { hard") }}$

Prop: Let L be any NP-complete language. Then $\mathrm{P}=\mathrm{NP}$ if and only if $L \in \mathrm{P}$.

Cook-Levin Theorem

(Stephen Cook 1971, Leonid Levin 1973)

Theorem: SAT (Boolean satisfiability) is NP-complete.

Proof: Need to show that every language in NP reduces to SAT (!) Proof next time.

More NP-complete problems

From now on we prove NP-completeness using:
Lemma: If we have the following

- L is in NP
- $L_{0} \leq_{P} L$ for some NP-complete L_{0}

Then L is NP-complete.
Proof: Since by hypothesis $L \in \mathrm{NP}$, it suffices to show that every $L^{\prime} \in \mathrm{NP}$ reduces to L.

- $L^{\prime} \leq_{P} L_{0}$ since L_{0} is NP-complete;
- $L_{0} \leq_{P} L$ by hypothesis; and so
- $L^{\prime} \leq_{P} L$ by transitivity.

Thus, L is NP-complete.

3-SAT

Def: A Boolean formula is in 3-CNF if it is of the form $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}$, where each clause C_{i} is a disjunction ("or") of 3 literals:

$$
C_{i}=\left(C_{i 1} \vee C_{i 2} \vee C_{i 3}\right)
$$

where each literal $C_{i j}$ is either a variable x, or the negation of a variable, $\neg x$ (sometimes written \bar{x}).
e.g. $(x \vee y \vee z) \wedge(\neg x \vee \neg u \vee w) \wedge(u \vee u \vee u)$

3-SAT is the set of satisfiable 3-CNF formulas.
Theorem: 3-SAT is NP-complete
Proof: We show that SAT $\leq_{P} 3$-SAT.

1. Given an arbitrary Boolean formula, e.g.

$$
\begin{gathered}
F=(\neg((x \vee \neg y) \wedge(z \vee w)) \vee \neg x) . \\
123340507
\end{gathered}
$$

2. Number the operators.
3. Select a new variable a_{i} for each operator.

The variable a_{i} is supposed to mean "the subformula rooted at operator i is true."
4. Write a formula F_{1} stating the relation between each subformula and its children subformulas.

For example, where

$$
\begin{gathered}
F=(\neg((x \vee \neg y) \wedge(z \vee w)) \vee \neg x), \\
1
\end{gathered} \begin{array}{llllll}
23 & 4 & 5 & 67
\end{array}
$$

$F_{1}=\left(\begin{array}{cccc} & \left(a_{3} \equiv \neg y\right) & \wedge & \left(a_{7} \equiv \neg x\right) \\ \wedge & \left(a_{2} \equiv x \vee a_{3}\right) & \wedge & \left(a_{1} \equiv \neg a_{4}\right) \\ \wedge & \left(a_{5} \equiv z \vee w\right) & \wedge & \left(a_{6} \equiv a_{1} \vee a_{7}\right) \\ \wedge & \left(a_{4} \equiv a_{2} \wedge a_{5}\right) & & \end{array}\right)$
5. Let k be the number of the main operator/subformula of F.
(Note: $k=6$ in the example)
Claim: $a_{k} \wedge F_{1}$ is satisfiable iff F is satisfiable.
6. Write F_{1} in 3-CNF to obtain F_{2}.

Fact: Every function $f:\{0,1\}^{k} \rightarrow\{0,1\}$ can be written as a k-CNF and as a k-DNF (OR of ANDs). [albeit with possibly 2^{k} clauses]

Proof: Write the truth table for f. To obtain a k-DNF, for each row of the table for which $f(x)=1$, we obtain a clause which ANDs all the literals in that row. We then OR these together over all such x. To obtain a k-CNF, we first build a k-DNF as in the last sentence for the function $\neg f$. This is the OR of many clauses: $C_{1} \vee \ldots \vee C_{m}$. Each C_{i} is an AND of k literals. We then use De Morgan's laws to obtain $\neg(\neg f)$, which yields $\overline{C_{1} \vee \ldots \vee C_{m}}=\overline{C_{1}} \wedge \ldots \wedge \overline{C_{m}}$, which is a k-CNF.
7. Output of the reduction: $a_{k} \wedge F_{2}$.

Execise: Note the above ingredients give us a CNF in which each clause has at most 3 literals. Some may have just 1 or 2 . Show how to extend such clauses to have exactly 3 literals, from 3 distinct variables (hint: add new dummy variables and more clauses).

In contrast, $2-\mathrm{SAT} \in \mathrm{P}$

Method (resolution):

1. If x and $\neg x$ are both clauses, then not satisfiable

$$
\text { e.g. }(x) \wedge(z \vee y) \wedge(\neg x)
$$

2. If $(x \vee y) \wedge(\neg y \vee z)$ are both clauses, add clause $(x \vee z)$ (which is implied).
3. Repeat. If no contradiction emerges \Rightarrow satisfiable.
$O\left(n^{2}\right)$ repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted

Vertex Cover (VC)

- Instance:
- a graph, e.g.

- a number k (e.g. 4)
- Question: Is there a set of k vertices that "cover" the graph, i.e., include at least one endpoint of every edge?

VC is NP-complete

- VC is in NP:
- 3 -SAT $\leq_{P} \mathrm{VC}$:
- Let F be a 3-CNF formula with clauses $C_{1} \ldots, C_{m}$, variables x_{1}, \ldots, x_{n}.
- We construct a graph G_{F} and a number N_{F} such that:

G_{F} has a size N_{F} vertex cover iff F is satisfiable

E.g. $F=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)$

- $G_{F}=$ one dumbbell for each variable, one triangle for each clause, and corner j of triangle i is connected to the vertex representing the j th literal in C_{i}.
- $N_{F}=2 m+n=2$ (\# clauses) + (\# variables).
$\Rightarrow 1$ vertex from each dumbbell and 2 from each triangle.
- Exercise: Show that F is satisfiable iff there is a cover of size N_{F}.

CLIQUE

- Instance:
- a graph, e.g.

- a number k (e.g. 4)
- Question: Is there a clique of size k, i.e., a set of k vertices such that there is an edge between each pair?

- Easy to see that CLIQUE \in NP.

$$
\mathrm{VC} \leq_{P} \mathrm{CLIQUE}
$$

If G is any graph, let G^{c} be the graph with the same vertices such that:
there is an edge between x and y in G^{c}
iff there is no edge between x and y in G
e.g.
 $G^{c}=$

- Claim: G has a k-cover iff G^{c} has an $(n-k)$-clique, where n is the number of vertices in G.
(So the mapping $(G, k) \mapsto\left(G^{c}, n-k\right)$ is a reduction of VC to CLIQUE.)

An integer linear program is

- A set of variables x_{1}, \ldots, x_{n} which must take integer values.
- A set of linear inequalities:

$$
\begin{array}{ll}
& a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \leq c_{i} \\
\text { e.g. } & x_{1}-2 x_{2}+x_{4} \leq 7 \\
& \\
x_{1} \geq 0 & {\left[-x_{1} \leq 0\right]} \\
& x_{4}+x_{1} \leq 3
\end{array} \quad[i=1, \ldots, m]
$$

ILP $=$ the set of integer linear programs for which there are values for the variables that simultaneously satisfy all the inequalities.

ILP is NP-complete

ILP \in NP. (Not obvious! Need a little math to prove it. The reason is that an integer solution might have really big integers - we need to make sure they only need a polynomial number of bits. Proof omitted.)

ILP is NP-hard: by reduction from 3-SAT (3-SAT \leq_{P} ILP). Given 3-CNF Formula F, construct following ILP P as follows.

If the variables are x_{1}, \ldots, x_{n}, then we have the constraints $0 \leq x_{1}, \ldots, x_{n} \leq 1$. Also, if there are m clauses, we have constraints $c_{1}, \ldots, c_{m} \geq 1$, one for each clause. We also have a separate constraint for each clause. If the i th clause is, for exampe, $x_{i_{1}} \vee \bar{x}_{i_{2}} \vee x_{i_{3}}$, then we have a constraint $c_{i} \leq x_{i_{1}}+\left(1-x_{i_{2}}\right)+x_{i_{3}}$.

Recall: Linear Programming where the variables can take real values is known to be in P.

More NP-complete/NP-hard Problems

- Hamiltonian Circuit (and hence Travelling Salesman Problem) (see Sipser text for related problems)

- SchEDULING

- Circuit Minimization

- Short Proof
- Nash Equilibrium with Maximum Payoff

- Protein Folding

-
- See book by Garey \& Johnson for hundreds more.

