
CS125 Lecture 14 Fall 2016

NP-Completeness

The World if P 6= NP?

Q: If P 6= NP, can we conclude anything about any specific problems?

Idea: Try to find a “hardest” NP language.

– Want L ∈ NP such that L ∈ P iff every NP language is in P.

Reducibility

Informally, we say that a computational problem A reduces to a computational problem B (written A≤ B) if A

can be solved (efficiently) by solving B. Thus, an (efficient) algorithm for B implies an (efficient) algorithm for A.

We have already seen many examples:

• CONTEXT-FREE RECOGNITION ≤MATRIX MULTIPLICATION (HW3)

• MAX-FLOW ≤ LINEAR PROGRAMMING

• MATCHING ≤MAX-FLOW

• ZERO-SUM GAMES ≤ LINEAR PROGRAMMING

• Lfact ≤ FACTORING

• FACTORING ≤ Lfact

Here Lfact = {〈N,m〉 : N has a factor in {2, . . . ,m}}. The last bullet follows since, to factor N, we can iteratively

try to find one factor x then recurse on both x and N/x. To find a single factor, we can use a subroutine solving

Lfact and binary search on m (recall to be efficient, our running time should be polylogarithmic in N, since the input

length is dlogNe bits to write down N). As the last bullet shows, reductions are useful not only for showing that

problems can be solved efficiently, but also for giving evidence that problems are hard: under the widely believed

14-1

Lecture 14 14-2

conjecture that FACTORING has no polynomial-time algorithm, we can deduce that Lfact /∈ P (and hence P 6= NP).

Hence “A≤ B” can be interpreted equivalently as saying “A is at least as easy as B” or “B is at least as hard as A”.

Polynomial-Time Mapping Reductions

There are many forms of reducibility, and which one is most suitable depends on what kind of computational

phenomena we are interested in studying. A very general notion is that of a Turing reduction (aka oracle reduction),

where we say that A ≤ B if there is an algorithm that solves A given any “black box” that solves B. (For example,

we add a Word-RAM instruction that will provide a solution to an instance of B written in memory in one time

step. It’s like programming with a library for which we have no idea how the the library functions themselves are

implemented (or even if they can be implemented at all).) The polynomial-time analogue of Turing reductions are

known as Cook reductions, and these are what we used in the reductions between FACTORING and Lfact.

However, for reductions between languages, it is often convenient to work with the following more restrictive

notion of reduction (known as polynomial-time mapping reductions or Karp reductions):

Def: L1≤P L2 iff there is a polynomial-time computable function f : Σ∗1→Σ∗2 s.t. for every x∈Σ∗1, x∈ L iff f (x)∈ L2.

Lecture 14: Polynomial Reductions, NP-Completeness, and Cook’s Theorem 5

L1 ≤p L2

fΣ∗
1 Σ∗

2

L1 L2

x ∈ L1 ⇒ f(x) ∈ L2

x ∈ L1 ⇒ f(x) ∈ L2

f computable in polynomial time

L2 ∈ P ⇒ L1 ∈ P .

• x ∈ L1⇒ f (x) ∈ L2

• x /∈ L1⇒ f (x) /∈ L2

• f computable in polynomial time

Proposition: If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

Proof:

Suppose that

Lecture 14 14-3

• f is a reduction of L1 to L2 computable in time T1, a polynomial.

• L2 is decidable in time T2, a polynomial.

To decide whether x ∈ L1:

1. Compute f (x). [takes time T1(|x|)]

2. Decide whether f (x) ∈ L2. [takes time T2(| f (x)|)]

But we know that | f (x)| ≤ T1(|x|), since the length of the output of a TM can’t be longer than the time in

which it runs.

Thus, T2(| f (x)|)≤ T2(T1(|x|)).

So total time ≤ T1(|x|)+T2(T1(|x|)), a polynomial.

NP-Completeness

Def: L is NP-complete iff

1. L ∈ NP and

2. For every L′ ∈ NP, we have L′ ≤P L. (“L is NP-hard”)

Prop: Let L be any NP-complete language. Then P = NP if and only if L ∈ P.

Cook–Levin Theorem

(Stephen Cook 1971, Leonid Levin 1973)

Theorem: SAT (Boolean satisfiability) is NP-complete.

Proof: Need to show that every language in NP reduces to SAT (!) Proof next time.

Lecture 14 14-4

More NP-complete problems

From now on we prove NP-completeness using:

Lemma: If we have the following

• L is in NP

• L0 ≤P L for some NP-complete L0

Then L is NP-complete.

Proof: Since by hypothesis L ∈ NP, it suffices to show that every L′ ∈ NP reduces to L.

• L′ ≤P L0 since L0 is NP-complete;

• L0 ≤P L by hypothesis; and so

• L′ ≤P L by transitivity.

Thus, L is NP-complete.

3-SAT

Def: A Boolean formula is in 3-CNF if it is of the form C1 ∧C2 ∧ . . .∧Cn, where each clause Ci is a disjunction

(“or”) of 3 literals:

Ci = (Ci1∨Ci2∨Ci3)

where each literal Ci j is either a variable x, or the negation of a variable, ¬x (sometimes written x).

e.g. (x∨ y∨ z)∧ (¬x∨¬u∨w)∧ (u∨u∨u)

3-SAT is the set of satisfiable 3-CNF formulas.

Theorem: 3-SAT is NP-complete

Proof: We show that SAT ≤P 3-SAT.

Lecture 14 14-5

1. Given an arbitrary Boolean formula, e.g.

F = (¬((x ∨ ¬y) ∧ (z ∨w)) ∨ ¬x).

1 2 3 4 5 6 7

2. Number the operators.

3. Select a new variable ai for each operator.

The variable ai is supposed to mean “the subformula rooted at operator i is true.”

4. Write a formula F1 stating the relation between each subformula and its children subformulas.

For example, where

F = (¬((x ∨ ¬y) ∧ (z ∨w)) ∨ ¬x),

1 2 3 4 5 6 7

F1 =


(a3 ≡ ¬y) ∧ (a7 ≡ ¬x)

∧ (a2 ≡ x∨a3) ∧ (a1 ≡ ¬a4)

∧ (a5 ≡ z∨w) ∧ (a6 ≡ a1∨a7)

∧ (a4 ≡ a2∧a5)


5. Let k be the number of the main operator/subformula of F .

(Note: k = 6 in the example)

Claim: ak∧F1 is satisfiable iff F is satisfiable.

6. Write F1 in 3-CNF to obtain F2.

Fact: Every function f : {0,1}k→ {0,1} can be written as a k-CNF and as a k-DNF (OR of ANDs). [albeit

with possibly 2k clauses]

Proof: Write the truth table for f . To obtain a k-DNF, for each row of the table for which f (x) = 1, we obtain

a clause which ANDs all the literals in that row. We then OR these together over all such x. To obtain a

k-CNF, we first build a k-DNF as in the last sentence for the function ¬ f . This is the OR of many clauses:

C1∨ . . .∨Cm. Each Ci is an AND of k literals. We then use De Morgan’s laws to obtain ¬(¬ f), which yields

C1∨ . . .∨Cm =C1∧ . . .∧Cm, which is a k-CNF.

7. Output of the reduction: ak∧F2.

Lecture 14 14-6

Execise: Note the above ingredients give us a CNF in which each clause has at most 3 literals. Some may have

just 1 or 2. Show how to extend such clauses to have exactly 3 literals, from 3 distinct variables (hint: add new

dummy variables and more clauses).

In contrast, 2-SAT ∈ P

Method (resolution):

1. If x and ¬x are both clauses, then not satisfiable

e.g. (x)∧ (z∨ y)∧ (¬x)

2. If (x∨ y)∧ (¬y∨ z) are both clauses, add clause (x∨ z) (which is implied).

3. Repeat. If no contradiction emerges⇒ satisfiable.

O(n2) repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted

VERTEX COVER (VC)

• Instance:

– a graph, e.g.

NP-completeness 5

Vertex Cover (VC)

• Instance:

– a graph, e.g.

– a number k (e.g. 4)

• Question: Is there a set of k vertices that “cover” the graph, i.e., include at least one endpoint
of every edge?

• VC ∈ NP.

3-SAT ≤P VC

• Let F be a 3-CNF formula with clauses C1 . . . , Cm, variables x1, . . . , xn.

• We construct a graph GF and a number NF such that:

GF has a size NF vertex cover iff F is satisfiable

• GF = one dumbbell for each variable, one triangle for each clause, and corner j of triangle i is
connected to the vertex representing the jth literal in Ci.

• NF = 2m + n.

– a number k (e.g. 4)

• Question: Is there a set of k vertices that “cover” the graph, i.e., include at least one endpoint of every edge?

NP-completeness 5

Vertex Cover (VC)

• Instance:

– a graph, e.g.

– a number k (e.g. 4)

• Question: Is there a set of k vertices that “cover” the graph, i.e., include at least one endpoint
of every edge?

• VC ∈ NP.

3-SAT ≤P VC

• Let F be a 3-CNF formula with clauses C1 . . . , Cm, variables x1, . . . , xn.

• We construct a graph GF and a number NF such that:

GF has a size NF vertex cover iff F is satisfiable

• GF = one dumbbell for each variable, one triangle for each clause, and corner j of triangle i is
connected to the vertex representing the jth literal in Ci.

• NF = 2m + n.

Lecture 14 14-7

VC is NP-complete

• VC is in NP:

• 3-SAT ≤P VC:

– Let F be a 3-CNF formula with clauses C1 . . . ,Cm, variables x1, . . . ,xn.

– We construct a graph GF and a number NF such that:

GF has a size NF vertex cover iff F is satisfiable

E.g. F = (x1∨ x2∨¬x3)∧ (¬x1∨¬x2∨ x3)∧ (x1∨¬x2∨ x3)

Lecture 14: Polynomial Reductions, NP-Completeness, and Cook’s Theorem 18

3-SAT ≤p VC

• Let F be a 3-CNF formula with clauses C1 . . . , Cm,
variables x1, . . . , xn.

• We construct a graph GF and a number NF such that:

GF has a size NF vertex cover iff F is satisfiable

e.g. F = (x1 ∨ x2 ∨ ¬x3)
∧ (¬x1 ∨ ¬x2 ∨ x3)
∧ (x1 ∨ ¬x2 ∨ x3)

x1 x1 x2 x2 x3 x3

1 3 1 3 1 3

2 2 2

C1 C2 C3

• So create one dumbbell for each possible variable, one
triangle for each clause, and connect corner j of triangle
for Ci to the vertex representing the jth literal in Ci.

– GF = one dumbbell for each variable, one triangle for each clause, and corner j of triangle i is connected

to the vertex representing the jth literal in Ci.

– NF = 2m+n = 2 (# clauses)+ (# variables).

⇒ 1 vertex from each dumbbell and 2 from each triangle.

– Exercise: Show that F is satisfiable iff there is a cover of size NF .

CLIQUE

• Instance:

Lecture 14 14-8

– a graph, e.g.

NP-completeness 6

CLIQUE

• Instance:

– a graph, e.g.

– a number k (e.g. 4)

• Question: Is there a clique of size k, i.e., a set of k vertices such that there is an edge between
each pair?

• CLIQUE ∈ NP.

• VC ≤P CLIQUE.

More NP-complete/NP-hard Problems

• Hamiltonian Circuit (and hence Travelling Salesman Problem) (see Sipser for related
problems)

• Scheduling

• Circuit Minimization

• Short Proof

• Nash Equilibrium with Maximum Payoff

• Protein Folding

•
...

• See Garey & Johnson for hundreds more.

– a number k (e.g. 4)

• Question: Is there a clique of size k, i.e., a set of k vertices such that there is an edge between each pair?

NP-completeness 6

CLIQUE

• Instance:

– a graph, e.g.

– a number k (e.g. 4)

• Question: Is there a clique of size k, i.e., a set of k vertices such that there is an edge between
each pair?

• CLIQUE ∈ NP.

• VC ≤P CLIQUE.

More NP-complete/NP-hard Problems

• Hamiltonian Circuit (and hence Travelling Salesman Problem) (see Sipser for related
problems)

• Scheduling

• Circuit Minimization

• Short Proof

• Nash Equilibrium with Maximum Payoff

• Protein Folding

•
...

• See Garey & Johnson for hundreds more.

• Easy to see that CLIQUE ∈ NP.

VC ≤P CLIQUE

If G is any graph, let Gc be the graph with the same vertices such that:

there is an edge between x and y in Gc

iff

there is no edge between x and y in G

e.g.

Lecture 14: Polynomial Reductions, NP-Completeness, and Cook’s Theorem 22

VC ≤p CLIQUE

If G is any graph, let Gc be the graph with the same
vertices such that:

there is an edge between x and y in Gc

iff
there is no edge between x and y in G

e.g.

G = Gc =

• Claim: G has a k-cover iff Gc has an (n− k)-clique, where n is the number of vertices in G.

(So the mapping (G,k) 7→ (Gc,n− k) is a reduction of VC to CLIQUE.)

INTEGER LINEAR PROGRAMMING

Lecture 14 14-9

An integer linear program is

• A set of variables x1, . . . ,xn which must take integer values.

• A set of linear inequalities:

ai1x1 +ai2x2 + . . .+ainxn ≤ ci [i = 1, . . . ,m]

e.g. x1−2x2 + x4 ≤ 7

x1 ≥ 0 [−x1 ≤ 0]

x4 + x1 ≤ 3

ILP = the set of integer linear programs for which there are values for the variables that simultaneously satisfy

all the inequalities.

ILP is NP-complete

ILP ∈ NP. (Not obvious! Need a little math to prove it. The reason is that an integer solution might have

really big integers – we need to make sure they only need a polynomial number of bits. Proof omitted.)

ILP is NP-hard: by reduction from 3-SAT (3-SAT ≤P ILP). Given 3-CNF Formula F , construct following

ILP P as follows.

If the variables are x1, . . . ,xn, then we have the constraints 0≤ x1, . . . ,xn ≤ 1. Also, if there are m clauses, we

have constraints c1, . . . ,cm ≥ 1, one for each clause. We also have a separate constraint for each clause. If the

ith clause is, for exampe, xi1 ∨ x̄i2 ∨ xi3 , then we have a constraint ci ≤ xi1 +(1− xi2)+ xi3 .

Recall: LINEAR PROGRAMMING where the variables can take real values is known to be in P.

More NP-complete/NP-hard Problems

• HAMILTONIAN CIRCUIT (and hence TRAVELLING SALESMAN PROBLEM) (see Sipser text for related prob-

lems)

Lecture 14 14-10

• SCHEDULING

• CIRCUIT MINIMIZATION

• SHORT PROOF

• NASH EQUILIBRIUM WITH MAXIMUM PAYOFF

• PROTEIN FOLDING

•
...

• See book by Garey & Johnson for hundreds more.

