
CS125 Lecture 15 Fall 2016

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete

• Already know SAT ∈ NP, so only need to show SAT is NP-hard.

• Let L be any language in NP. Let M be a NTM that decides L in time nk.

We define a polynomial-time reduction

fL : inputs 7→ formulas

such that for every w,

M accepts input w iff fL(w) is satisfiable

Reduction via “computation histories”

Proof Idea: satisfying assignments of fL(w)↔ accepting computations of M on w

Describe computations of M by boolean variables:

– If n = |w|, then any computation of M on w has at most nk configurations.

– Each configuration is an element of Cnk
, where C = Q∪Γ∪{#}

(mark left and right ends with {#}).
 computation depicted by nk×nk “tableau” of members of C.

– Represent contents of cell (i, j) by |C| boolean variables {xi, j,s : s∈C}, where xi, j,s = 1 means “cell (i, j)
contains s”.

– 0≤ i, j < nk, so |C| ·n2k boolean variables in all

Subformulas that verify the computation

Express conditions for an accepting computation on w
by boolean formulas:

• φcell = “for each (i, j), there is exactly one s ∈C such that xi, j,s = 1”.

We can express this by

φcell =
∧

0≤i, j<nk


(∨

s∈C

xi, j,s

)
∧

 ∧
s,t∈C
s6=t

(x̄i, j,s∨ x̄i, j,t)




15-1

Lecture 15 15-2

The “or” over s ∈C ensures that cell (i, j) has at least one symbol written in it, and the “or” over s 6= t ∈C
ensures that at most one symbol is written in the cell. Thus, overall, we ensure that exactly one symbol is
written in each cell.

• φstart = “first row equals start configuration on w”

φstart = x0,0,#∧ x0,1,q0 ∧

(
n∧

j=1

x0, j+1,w j

)
∧

(
nk−2∧

j=n+2

x0, j,t

)
∧ x0,nk−1,#

• φaccept = “this computation branch accepts w” (we will look for qaccept being somewhere in the table)

φaccept =
∨

0≤i, j<nk

xi, j,qaccept

• φmove = “every 2×3 window is consistent with the transition function of M”

φmove =
∧

0<i<nk−1
0≤ j<nk−1

(the 2×3 window with top-middle cell at (i, j) is valid)

To know whether such a cell is “valid”, we generate a set V of 6-tuples of assignments to cells in a 2× 3
window that are valid. We do not delve into the tedious details here of how to define V , but you may try as
an exercise (for example, ’#’ should be copied to the row below without change, the top-middle cell, if not a
state or adjacent to a state, should be copied to the cell below without change, etc.). Then the expression “the
2×3 window with top-middle cell at (i, j) is valid” can then be expressed as∨

(a1,...,a6)∈V

(xi, j−1,a1 ∧ xi, j,a2 ∧ xi, j+1,a3 ∧ xi+1, j−1,a4 ∧ xi+1, j,a5 ∧ xi+1, j+1,a6)

Completing the proof

Claim: Each of above can be expressed by a formula of size of size O((nk)2) =O(n2k), and can be constructed
in polynomial time from w.

Claim: M has an accepting computation on w if and only if fL(w)= φcell∧φstart∧φaccept∧φmove has a satisfying
assignment.

Pf: φcell ensures each cell has exactly one symbol written in it, so that we have a valid tableau. φaccept makes
sure we arrive in an accept state, and φstart ensures the first row of the tableau is valid. Now, we claim by
induction that the first j rows of the tableau represent a valid execution branch of the nondeterministic Turing
machine for each j, by induction on j. The base case is true for j = 1 due to φstart. Now for the inductive step.
For j > 1, we can assume the (j− 1)st row is valid. Now, for each cell in the (j− 1)st row which contains
a non-#, non-state symbol and which is not adjacent to a state symbol, it must be the top-center cell in some
2× 3 window. The portion of φmove corresponding to that window ensures that the cell is copied without

Lecture 15 15-3

change to row j. Also for the cell with the state location in row j− 1, it also is the top-center cell in some
2× 3 window, and that window ensures the transition function is faithfully represented in the tableau when
moving from row j−1 to j.

Thus w 7→ fL(w) is a polynomial-time reduction from L to SAT.

Since above holds for every L ∈ NP, SAT is NP-hard, as desired. �

Lecture 15 15-4

15.2 Towards Resolving P vs. NP

Lecture 15 15-5

15.3 Around and Within NP

co-NP

co-NP = {L : L ∈ NP}.

Some co-NP-complete problems:

– Complement of any NP-complete problem.

– TAUTOLOGY = {ϕ : ∀a ϕ(a) = 1} (even for 3-DNF formulas ϕ).

Believed that NP 6= co-NP, P 6= NP∩ co-NP.

Between P and NP-complete

We will prove the following theorem at the end of the notes.

Theorem: If P 6= NP, then there are NP languages that are neither in P nor NP-complete.

Some natural candidates:

– FACTORING (when described as a language)

– NASH EQUILIBRIUM

– GRAPH ISOMORPHISM

– Any problem in NP∩ co-NP for which we don’t know a poly-time algorithm.

Lecture 15 15-6

15.4 Two Possible Worlds

The World If P 6= NP

P
NP co-NP

NP-complete co-NP-complete

Recursive r.e. co-r.e.

The World If P = NP

P =

NP =

co-NP =

NP-complete

Recursive

r.e. co-r.e.

15.5 NP-intermediate problems

Another interesting concept is that of NP-intermediate problems. The question here is: if P 6= NP, can it be the
case that every L ∈ NP is either in P, or is NP-complete? Or must there necesarily be some languages which are in
between? (i.e. in NP, but too hard to be in P and too easy to be NP-hard)

Lecture 15 15-7

As mentioned above, there must be some NP-intermediate languages. This is known as Ladner’s theorem (as it
was proven by Richard Ladner).

We will prove the following in the next section.

Lemma 15.1 There is an infinite enumeration of Turing machines M1,M2, . . . , such that:

(1) P = {L : ∃i, L = L(Mi)}

(2) Mi runs in time at most |x|i for each i, for any x with |x| ≥ 2

(3) There is an algorithm which, given i as input, outputs the encoding 〈Mi〉 in time at most polylogarithmic in i

Similarly, there is an enumeration of all poly-time computable functions f1, f2, . . . such that f j runs in time at
most |x| j for any input x with |x| ≥ 2, and there is an algorithm which given i as input, outputs the encoding of a
Turing machine computing fi in time polylogarithmic in i.

Now we prove Ladner’s theorem.

Theorem 15.2 If P 6= NP, then there exists a language L ∈ NP\P such that there is no poly-time Karp reduction
from SAT to L.

Proof: Let M1,M2, . . . and f1, f2, . . . be sequences satisfying the conditions of Lemma 15.1.

The remainder of the following proof is now due to Impagliazzo (see the pdf at the url http://oldblog.
computationalcomplexity.org/media/ladner.pdf). We now define a language L which we show
is NP-intermediate. Define L = {〈φ〉1 f (n)−n : |〈φ〉| = n, φ ∈ SAT}, where 〈φ〉 is the encoding of some Boolean
formula φ such that the encoding ends in a 0. It remains to define f to ensure that L is NP-intermediate. In order to
accomplish this, we must make sure that (a) L 6= L(Mi) for any Mi in the above sequence, and (b) none of the fi are
valid Karp-reductions from SAT to L. We will also ensure that f is poly-time computable. Note we cannot make
f (n) too large, since otherwise L would be in P (e.g. f (n) ≥ 2n). We cannot make f (n) at most a polynomial in n
either though, since otherwise there’s a clear poly-time Karp reduction from SAT to L (append f (n) 1’s).

We define f (n) via an algorithm. Initialize i = 1. Then for 1 ≤ m ≤ n in order, first define f (m) = mi. Then
search all x with 2 ≤ |x| ≤ lgm. If any such x exists with x ∈ L(Mi) but x /∈ L, or vice versa, then we set i←
min{i+ 1, lgm/ lg lgm} (we have successfully demonstrated that L 6= L(Mi), so we increment i as long as it isn’t
“too big” already, to keep our computation of f (n) efficient). Note f (n) is poly-time computable in n since there are
2lgn = n x’s of such small length to check, and i is never larger than lgn/ lg lgn so we can run Mi on x in time at most
|x|lgn/ lg lgn = n to check whether x ∈ L(Mi). We can also check whether x ∈ L in poly-time since the formula portion
of x has length at most lgn, and SAT can be decided in exponential time, and 2O(lgn) ≤ poly(n).

We claim that now, with this definition of f (n) in hand, L is in NP\P. To see that it is in NP, note we have to
check that the longest suffix of 1’s is of length f (n)−n, which is easy to check since f is poly-time computable. We
also need to check that 〈φ〉 ∈ SAT. But this can be checked with a poly-time verifiable witness: namely the SAT
witness (i.e. a satisfying assignment for φ). Now we must show that L /∈ P. If L ∈ P, then there exists some j such
that L = L(M j). But then, once the variable i in the algorithm to compute f equals j, i can never increase beyond

Lecture 15 15-8

j, since there will never be an x of any length which is in exactly one of L or L(M j) but not both. This implies that
f (n) = O(n j) for all n. But then there is an easy poly-time algorithm to decide SAT: given a Boolean formula φ,
append f (n)− |〈φ〉| 1’s to 〈φ〉 to form a string x, then run M j on x. The runtime of this procedure is at most the
runtime of M j plus O(n j), which overall is polynomial in n.

We now just need to ensure that no f j is a valid Karp-reduction from SAT to L. Suppose, to the contrary, that
some f j is a valid Karp-reduction from SAT to L. We now show this implies that SAT ∈ P, which is a contradiction.
Let φ be a formula for which we wish to decide whether φ ∈ SAT. We now describe how our poly-time algorithm
A operates to decide whether φ ∈ SAT. We have | f j(φ)| ≤ |〈φ〉| j. Since we have established L /∈ P, there must be
some constant n0 such that f (n)≥ nk for all n ≥ n0, where k > j. We hardcode the answer to all φ with |〈φ〉| ≤ n0.
Thus A can easily output the correct answer if |〈φ〉| ≤ n0.

If |〈φ〉| > n0, we compute f j(φ). If the output is not of the correct format for L (i.e. the encoding of a boolean
formula ψ followed by f (|〈ψ〉|) 1’s, then we reject. Otherwise, let m = |〈ψ〉|. If m ≤ n0, then we again can
output the answer from memory since it is hardcoded. Otherwise, we have mk ≤ f (m) = | f j(φ)| ≤ |〈φ〉| j, implying
m = |〈ψ〉| ≤ |〈φ〉| j/k for f (m) = mk. If k ≤ j then we must have |〈ψ〉| ≤ n0, so we can decide SAT for ψ (and hence
for φ) in constant time by looking up our hardcoded answer. Otherwise, |〈ψ〉| ≤ |〈φ〉| j/k < |〈φ〉|, and hence ψ is
a strictly smaller formula than φ. We then apply this algorithm recursively to decide ψ ∈ SAT , which leads to a
poly-time algorithm.

15.6 Proof of Lemma 15.1

As we will see in the next lecture, the set of all Turing machines is countable. Thus the set of all decidable languages
is countable, implying that P as a set of languages is also countable. This implies there is some enumeration of
Turing Machines M′1,M

′
2, . . . such that P = {L : ∃i, L = L(M′i)}. The issue is that (a) it is not clear how to efficiently

iterate over the M′i , and (b) M′i does not necessarily run in time at most ni.

Let us now fix the above issues. For (1), we proceed by treating every binary string with a single # symbol
as the encoding of a pair 〈M,k〉 (the # separates the encoding of M from the binary description of k). Here k is
a positive integer, and M is some Turing machine. If some binary string does not encode a valid TM M, then we
treat it as an encoding of the Turing machine M∗ which always immediately transitions into qre ject in the very first
step. Otherwise, if it does encode such a pair, we interpret it as the Turing machine which simulates M on its input
x, |x| = n, but halts if M takes more than nk steps. This simulation is accomplished by a Turing machine having
four tapes. In the beginning of the computation, the first tape is used to compute nk and store it, taking O(k3 log2 n)
time (k repeated multiplications of integers that are O(k logn) digits). The second tape is used to keep track of t, the
number of steps taken by the simulator so far. The third tape is used to store 〈M〉, and the the input x is copied to the
final work tape (the fourth tape). After every step of the simulator, t is incremented, taking O(k logn) time. We also
test whether t > nk after every step of the simulator, and if so, we halt and reject. If M halts before that, we halt in the
state M halts in. This simulation takes time at most O(k3 log2 n+nk)≤Cnk ≤ nk′ for n≥ 2, where k′ = k+dlog2Ce.

Our final enumeration is thus as follows: M1 = M2 = . . . = Mdlog2 Ce = M∗. From then on, we enumerate over
(i,k) pairs in the order (1,1),(1,2),(2,1),(1,3),(2,2),(3,1), . . . (first all pairs summing to two, then those summing
to three, etc.). For each (i,k) pair, we treat i as a description of M (which again may map to M∗ is i written in binary
is not a valid encoding of some TM), and k is as described above. By construction, each TM in this sequence decides
a language in P. Furthermore, for each L ∈ P, there is some TM M (corresponding to an integer i when encoded
in binary) deciding it in time at most nk for some k ≥ 1 for all n ≥ 2. Since the simulation above can blow up the

Lecture 15 15-9

running time by at most some fixed polynomial factor (say n j for some j), this means when the pair (i,k+ j) is
enumerated over, M will always be faithfully executed on its input without being cut off early.

