
CS125 Lecture 19 Fall 2016

19.1 The dictionary problem

Consider the following data structural problem, usually called the dictionary problem. We have a set of items. Each

item is a (key, value) pair. Keys are in the range {1, . . . ,U}, and values are arbitrary. A data structure supporting the

following operations is called a dynamic dictionary.

• insert(k,v): insert a new item into the database with key k and value v. If an item with key k already exists in

the database, update its value to v.

• delete(x): delete item x from the database (we assume x is a pointer to the item)

• query(k): return the the value associated with key k, or null if key k is not in the database

The fact that we must not only support query but also insert and delete makes the above variant of the dictionary

problem dynamic. (Dynamic variants of data structure problems are ones that support the data set being updated.)

19.1.1 Dynamic dictionary via hashing with chaining

One randomized solution to the dynamic dictionary problem is hashing with chaining. A hash family H is a set

of functions h : {1, . . . ,U} → {1, . . . ,m}. The basic idea of this solution is to maintain an array of size m where an

item with key k is stored in the h(k)th position of the array. Unfortunately this does not work as is due to collisions:

two distinct keys k,k′ in our database may have h(k) = h(k′), so how do we resolve this collision? In hashing with

chaining, we initialize some array A of size m, where A[i] stores the pointer to the head of a doubly linked list. We

pick some h uniformly at random from H . Then A[i] will be a doubly linked list containing (key,value) pairs of all

items whose key k satisfies h(k) = i. That is, colliding items are stored in the same linked list. To insert a (k,v) pair,

we simply insert this new item to the head of the list at A[h(k)]. To query k, we traverse the list at A[h(k)] until we

find an item with key k (or discover that none exists). Deletion splices the item out of the doubly linked list when it

finds it.

Of course, the above scheme will not always be efficient. For example, consider H only containing a single

hash function h satisfying h(i) = 1 for all i. Then our entire data structure is a single linked list. However, if H is

nice in a certain way and m is sufficiently large, we will be able to prove good guarantees.

19-1

Lecture 19 19-2

Definition 19.1 We say a family H of hash function mapping {1, . . . ,U} into {1, . . . ,m} is universal if for all 1 ≤

x < y≤U,

P
h∈H

(h(x) = h(y))≤ 1
m
,

where h is chosen uniformly at random from H .

Example 19.2 The set H of all functions mapping {1, . . . ,U} into {1, . . . ,m} is universal and has |H |= mU . That

is, an element h ∈H can be described using log |H |=U logm bits of space.

Example 19.3 Another option is to pick some prime p≥U and define ha(x) = (ax mod p) mod m. Then we let

H = {ha : 0 < a < p}. Then |H | = p− 1, and we can choose p for example to be at most polynomial in U , so a

random h ∈H can be represented using log |H |= O(logU) bits. The analysis of this scheme requires some abstract

algebra beyond the scope of this course, but this family turns out to be “almost universal”, in the sense that for any

x 6= y, Ph∈H (h(x) = h(y)) ≤C/m for some constant C that tends to 1 as p grows large (and for most applications,

this weaker property suffices).

Theorem 19.4 Consider a hash table with chaining on a database with n items using a universal hash family H

with m≥ n. Then executing a query takes expected time O(1+T), where T is the cost of evaluating a hash function

h ∈H .

Proof: Let the query be on some key k. A query performs one hash evaluation, taking time T , followed by traversing

the list at A[h(k)]. For i = 1, . . . ,n let Xi be a random variable which is 1 if the ith key ki in the database has

h(ki) = h(k), and Xi is 0 otherwise. The the running time of a query is proportional to

T +
n

∑
i=1

Xi.

Thus by linearity of expectation, the expected running time of a query is proportional to

T +
n

∑
i=1

E
h

Xi = T +
n

∑
i=1

P
h∈H

(h(ki) = h(k))≤ T +
n

∑
i=1

1
m

Noting that m≥ n, the above is T +1.

19.1.2 Static dictionary via perfect hashing

In this section we study the static dictionary problem and describe a solution based on two-level perfect hashing.

Sometimes it is also called “FKS perfect hashing” after its inventors: Fredman, Komlós, and Szemerédi. Recall

Lecture 19 19-3

in the static dictionary problem, there are no item insertions or deletions, but rather the set of items S is fixed in

the beginning. Letting K ⊂U denote the keys that appear amongst (key, value) pairs in S, we say a hash function

h : [K]→ [m] is a perfect hash function for S if it is injective on K, that is ∀k,k′ ∈ K,k 6= k′⇒ h(k) 6= h(k′). If we

could efficiently find a perfect hash function h for S, with a hash function h that is quickly computable, it would

imply a very simple solution to the static dictionary problem: namely initialize an array A of length m, and for any

(k,v) ∈ S, store v in A[h(k)].

In this section we describe a solution to the static dictionary problem which yields O(1) worst case query time,

m = O(n) space, and O(n) expected preprocessing time to create the data structure.

To begin, recall the birthday paradox where, assuming random birthdays, you shouldn’t be surprised that two

people have the same birthday when you have at least ≈
√

365 people in one room.

19.1.2.1 Quadratic space

If we were willing to make a table whose size is quadratic in size n. Then we can easily construct a perfect hash

value. Let H be a universal hash family and m = n2.

Claim: If H is universal and m = n2, then Ph(no collisions)≥ 1/2 when using hash function h ∈H .

Proof: In order for a collision to occur, elements x,y must equal each other. Of the
(n

2

)
pairs, the chance they

collide is≤ 1/m by definition of universal hash family. Then the probability a collision occurs Ph(collision occurs)≤(n
2

)
/m < 1/2.

This is the opposite of the birthday paradox since we are looking for the probability that no pair of people has

the same birthday. The complement then shows that the probability of no collisions must ≥ 1/2. Our method then

involves trying a random h from H . If we have any collisions, we pick another h. On average, we would only need

to do this twice.

19.1.2.2 Linear space

Let’s say we want to get a better space complexity. The general idea is that we are going to perform a 2-level

hashing scheme: first we pick a random function hi ∈ H from the universal hash family and hash all elements. Let

Bi represent the number of items that hash to bucket i. We then wish to keep picking random hi ∈H until we find hi

such that

Lecture 19 19-4

m

∑
i=1

B2
i ≤ 4n

Note that we do not know how long it will take to find hi that fulfills the above condition. Once we do find our

satisfactory hi, we can use the birthday paradox, which states that if we have n possible days in the year, once we

have
√

n, we can expect to find two people with the same birthday. Likewise, if we have significantly fewer than

T =
√

n, if we taking values between 1 and T 2 and we have much less than T people, we can be pretty sure that

there isn’t a collision.

For bucket i, we can then hash all Bi of the values in it to 1, . . . ,B2
i using hi : [U]→ [10B2

i], then by the birthday

paradox, there are probably no collisions. To summarize, the entire method is then

(1) First we take our elements that take on values v∈ [n] and hash them using first-level hash function h : [U]→ [m]

such that
m

∑
i=1

B2
i ≤ 4n

where Bi is the number of items in the bucket i. This creates first-level table A.

(2) Next, we use m second-level hash functions h1, . . . ,hm and m second-level tables A1, . . . ,Am. Note that we pick

hi such that there are no collisions in Ai.

Thus, we can ensure no collisions in the 2-level hash table structure. Our space complexity is O(m+∑
m
i=1 10B2

i)

since we need m first-level buckets and ∑
m
i=1 10B2

i second-level buckets. Note that since we chose h such that the

sum of ∑
m
i=1 B2

i ≤ 4m, our space complexity is Θ(n).

Let’s back up though. We initially said to keep picking h such that ∑
m
i=1 B2

i ≤ 4n . How long will that take?

Claim: Ph(∑i=1 B2
i > 4n)≤ 1/2)

Lecture 19 19-5

Proof: Let Q ji = 1 if item j hashes to i and 0 otherwise. We can rewrite Bi as

Bi =
n

∑
j=1

Q ji

B2
i =

(
n

∑
j=1

Q ji

)2

=
n

∑
j=1

Q2
ji + ∑

j 6=k
Q jiQ jk

= ∑
j

Q ji + ∑
j 6=k

Q jiQki (19.1)

m

∑
i=1

B2
i =

m

∑
i=1

n

∑
j=1

Q ji +
m

∑
i=1

∑
j 6=k

Q jiQki

= n+
m

∑
i=1

∑
j 6=k

Q jiQki (19.2)

E

(
m

∑
i=1

B2
i

)
= n+E

(
m

∑
i=1

∑
j 6=k

Q jiQki

)

= n+E

(
m

∑
i=1

∑
j 6=k

Q jiQki

)
= n+n−1 = 2n−1 (19.3)

Above, we show a few significant and potentially non-intuitive steps. In (19.1), we can drop the square of ∑
n
j=1 Q ji

since Q ji is either 0 or 1. In (19.2), we can reorder the summations: we know that ∑
m
i=1 Q ji = 1 since item j will

hash to exactly one of the m values. We then find ∑
n
j=1 1 = n.

For (19.3), we know that Q jiQki will have a product of 1 if and only if h(j) = h(k), meaning j and k hash to the

same bucket. Our resulting term is then

E ∑
j 6=k

[1 if h(j) = h(k)]

We can then linearize the expectation inside the summation, yielding the probability that the two item j,k collide,

which is exactly universal hashing. The probability of collision ≤ 1/m, and there are n(n− 1) possibilities since

there are n choices for j and n−1 choices for k, giving us

∑
j 6=k

P(collide) =
n(n−1)

m

Since m = n, we get that ∑ j 6=k P(collide) = n−1.

From Markov’s inequality, we get

P(X > λEX)<
1
λ

P

(
m

∑
i=1

B2
i > 4n

)
<

1
2

Lecture 19 19-6

This clears up the mystery of why we chose 4 as a coefficient in ∑
m
i=1 B2

i ≤ 4n: because it’s twice the expectation.

Now we know when picking h randomly from H , we have to pick an expected two times to fulfill our condition.

Picking hi is a similar story.

Claim: When picking hi : [U]→ [10B2
i], P(∃ collision)< 1/2

Proof: We define again X jk = 1 if j,k collide under hi and 0 otherwise. The expected number of collisions is

then

E(# of collisions) = E
Bi

∑
j=1

j−1

∑
k=1

X jk

=
Bi

∑
j=1

j−1

∑
k=1

EX jk

=
Bi

∑
j=1

j−1

∑
k=1

P(j,k collide under hi)

≤ ∑
k< j

1
10B2

i

<
B2

i

2
· 1

10B2
i
=

1
20

By Markov’s inequality again, P(# of collisions≥ 1)< 1/20

We have now shown that we can construct a 2-level hash table using hash functions h and h1, . . . ,hm to make a

static dictionary since h and h1, . . . ,hm can be chosen in constant time each and linear time overall.

