
CS125 Lecture 22 Fall 2016

Recall the definition of a probabilistically checkable proof (or “PCP”) from last lecture.

Definition 22.1 We say a language L is in the complexity class PCP(r(n),q(n)) if there is a poly-time randomized

verifier V such that for any x ∈ {0,1}∗, if we let n denote |x| then

1. On input 〈x,π〉, V reads x, tosses r(n) coins, reads q(n) bits of π, and then decides whether to accept or reject.

2. Completeness: if x ∈ L, then there exists π ∈ {0,1}poly(n) such that α
def
= P(V (x,π) = 1) = 1.

3. Soundness: if x /∈ L, then for all π ∈ {0,1}poly(n), we have ρ
def
= P(V (x,π) = 1)≤ 1/2.

The string π above is typically called the “proof” (since its purpose is to prove to V that x is in L). In this regard,

it is synonymous with what is typically called the “witness” in the definition of NP. Now recall the PCP theorem

from last lecture.

Theorem 22.2 (PCP Theorem [AS98, ALM+98]) There is a universal constant q> 0 such that NP=PCP(O(logn),q).

The PCP theorem was originally proven by giving a verifier which reads q=O(1) bits from π without specifying

exactly what the constant q is (though it was apparently rumored to be about 106 [O’D05]). After the PCP theorem

was proven, several works attempted to understand the smallest q achievable. In [BGLR94], it was shown one can

achieve q = 29, then q = 22 in [FK94], then q = 16 in [BGS98]. The following was then proven by Håstad.

Theorem 22.3 ([Hås01]) For any fixed constants ε,δ ∈ (0,1), there exists a PCP for SAT with q = 3, completeness

α > 1− ε and soundness ρ < 1/2+ δ. Furthermore, after the verifier V reads three bits πi1 ,πi2 ,πi3 of the proof, V

accepts iff πi1⊕πi2⊕πi3 = b for some b depending on x and its random coin flips (⊕ denotes XOR).

22.1 Equivalence of the PCP theorem and hardness of approximation

Notice that Håstad’s PCP immediately implies hardness of approximation for the problem MAX3LIN2. In this

optimization problem, we are given a collection of m linear equations over n variables. The variables take values

in {0,1}, and we interpret addition as being modulo 2 (which is equivalent to XOR). Furthermore, each equation
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involves exactly three variables. Thus, each equation is of the form xi1⊕xi2⊕xi3 = b. (In general, in the MAXkLINp

problem we have linear equations each with k variables, with variables taking values in {0, . . . , p− 1} with all

arithmetic performed modulo p.) The goal of MAX3LIN2 problem is to assign the variables to {0,1} so as to

maximize the number of linear equations satisfied. Letting OPT denote this maximum number divided by m, i.e.

the maximum fraction of equations that can be satisfied by an assignment, we first observe that there is a simple

randomized algorithm which satisfies at least OPT/2 equations in expectation, i.e. achieving a (1/2)-approximation.

The algorithm is simple: pick an assignment uniformly at random! If we define Xi to be an indicator random variable

for the event that equation i is satisfied, then X = (1/m)∑
m
i=1 Xi is the fraction of satisfied equations. Then

EX =
1
m

m

∑
i=1

EXi (linearity of expectation)

=
1
m

m

∑
i=1

P(equation i is satisfied)

=
1
m

m

∑
i=1

1
2

=
1
m
· m

2

≥ 1
m
· OPT

2

=
1
2
·OPT.

Håstad’s PCP above implies that approximating MAX3LIN2 with approximation factor 1/2+γ for any constant

0 < γ ≤ 1/2 is NP-hard! We will show that if we could perform such an approximation in polynomial time, then

we could solve SAT in polynomial time. Consider a SAT instance ϕ. We will use Håstad’s PCP with his verifier V ,

which takes in proofs π of size at most Cnc for some constants C,c > 0. We set ε = γ/2,δ = (3/4)γ− γ2 > 0. We

now consider the following MAX3LIN2 instance with N = Cnc variables x1, . . . ,xN . These variables are supposed

to represent the bits of a proof π. Recall the verifier V tosses R = O(logn) bits. For each r ∈ {0,1}R, we include

a linear equation in our MAX3LIN2 instance xi1 ⊕ xi2 ⊕ xi3 = b, where i1, i2, i3,b are as V would have chosen if its

coin tosses had yielded r. This completes the description of our reduction from ϕ to a MAX3LIN2 instance. Note

the reduction runs in polynomial time since V runs in polynomial time (so we can feed it ϕ,r to determine i1, i2, i3,b

quickly), and the number of bitstrings r we have to loop over to generate all the equations is 2R ≤ poly(n). We then

ask our algorithm approximating MAX3LIN2 to approximate OPT: if it says OPT≥ 1/2+(3/4)γ− γ2, we output

that ϕ is satisfiable. Otherwise we say that it is unsatisfiable.

Now we argue about correctness of the reduction. If ϕ is satisfiable, then there exists a proof π so that V accepts

with probability α > 1− γ/2 for a random r ∈ {0,1}R. In other words, if we set x = π, then at least an α-fraction
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of the linear equations are satisfied by x. Thus our approximation algorithm with approximation factor 1/2+ γ will

satisfy at least (1− γ/2)(1/2+ γ) = 1/2+(3/4)γ− γ2 equations, which is strictly larger than ρ by our choice of δ.

If ϕ is unsatisfiable, then soundness guarantees that no proof π causes V to accept with probability 1/2+δ or larger.

Since x can always be set to equal any proof, this shows that no setting of x satisfies a (1/2+δ)-fraction of equations

or more. Thus, even if our approximation algorithm managed to achieve OPT in this case, we would satisfy strictly

less than a 1/2+(3/4)γ− γ2 fraction of the equations, and thus correctly declare that ϕ is unsatisfiable.

It is worth noting that deciding whether all equations can be simultaneously satisfied is easy to do in polynomial

time! For example, one could use gaussian elimination.

As it turns out, the fact that Håstad’s PCP implied hardness of approximation for some optimization problem is

not an accident. As we will see now, the PCP theorem itself is equivalent to a statement on hardness of approximation.

We here follow the treatment of this topic in the computational complexity book of Arora and Barak [AB09].

Definition 22.4 In qCSPW (CSP stands for “Constraint Satisfaction Problem”), the input is a tuple of constraints

ϕ = (ϕ1, . . . ,ϕm). Each constraint ϕi is allowed to be an arbitrary function mapping [W ]n to {0,1}, where [W ]
def
= =

{0, . . . ,W − 1}, such that for each i ϕi(x) depends only on q entries of the vector x. Each ϕi is specified by its

truth table, which is of size W q. We use qCSP to denote qCSP2. The goal in this optimization problem is to find a

vector x ∈ [W ]q so as to maximize the fraction of constraints satisfied. We let OPT(ϕ) denote the maximum possible

fraction of constraints that can be simultaneously satisfied in ϕ.

Note that MAX3SAT is a special case of 3CSP2. In MAX3SAT, we would like to satisfy the maximum number

(or fraction) of clauses, where each clause is the disjunction of three literals. Thus for each i, the ith clause gives

rise to a function ϕi : {0,1}n→ {0,1} that only depends on 3 entries of an assignment x (namely the three entries

corresponding to the variables that appear in clause i). ϕi(x) = 1 iff x satisfies clause i.

Definition 22.5 ρ-gap-qCSPW is a promise decision problem where we are given an input ϕ with the promise that

either

1. OPT(ϕ) = 1, or

2. OPT(ϕ)< ρ

and we must decide which. If ϕ does not fall in either case (i.e. if ρ ≤ OPT(ϕ) < 1), our algorithm is allowed to

output anything.
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Theorem 22.6 The PCP theorem is equivalent to the statement that ρ-gap-qCSP is NP-hard for some constants

ρ,q.

Proof: PCP theorem =⇒NP-hardness of (1/2)-gap-qCSP: We reduce SAT to ρ-gap-qCSP. By the PCP theorem,

there is a PCP system for SAT with some verifier V who reads input ϕ, flips R = O(logn) coins, and does poly(|ϕ|)

computation before making queries to a proof π ∈ {0,1}N for some N ≤ poly(n). To decide whether ϕ ∈ SAT,

it suffices to discover whether there is a proof that causes V to accept with probability larger than 1/2, over the

randomness of choosing r. For each r ∈ {0,1}R we create a function ϕ′x,r : {0,1}N →{0,1}. ϕ′x,r(π) = 1 iff V would

accept π after flipping random string r; note that ϕ′x,r only depends on at most q bits of π for any r. Thus our qCSP

instance is the collection ϕ′x = (ϕ′x,r)r∈{0,1}R , and this reduction takes polynomial time since V runs in polynomial

time (to allow us to quickly determine the truth tables for the ϕ′x,r), and the number of r we have to consider is

m = 2R ≤ poly(n). Correctness of the reduction follows by completeness and soundness of the PCP for SAT: if

x /∈ L then there is no way to fill in the bits of the proof π to satisfy half of the constraints (i.e. at least half of the

random strings r cause V to reject), and if x ∈ L then there is a proof which causes V to accept for any r.

NP-hardness of ρ-gap-qCSP =⇒ PCP theorem: Let L be a language in NP so there is some poly-time

reduction f from L to ρ-gap-qCSP for some ρ∈ (0,1). This reduction gives us some qCSP instance ϕ=(ϕ1, . . . ,ϕm).

Our PCP for L is then as follows. The verifier first runs this reduction f on the input x to obtain ϕ. It expects to

be given a proof π which is simply an assignment to the variables in ϕ. It then flips dlog2 me = O(lg(|x|)) coins

(m ≤ poly(n) since f is a poly-time reduction) to pick a random constraint i, then checks that the assignment in π

satisfies ϕi. By correctness of the reduction f , this yields perfect completeness and soundness ρ. For ρ > 1/2, the

soundness can be reduced to 1/2 as in the PCP theorem stated above by the verifier picking k = d1/ log(1/ρ)e+1

constraints independently at random and checking that all are satisfied. This increases the number of queries by V

from q to qk = O(q). In a no instance, the probability that π satisfies all k constraints is at most ρk < 1/2.

We can also define a gap version of 3SAT, and in fact it is possible to show that the PCP theorem is equivalent

to the statement that there exists some constant ρ ∈ (0,1) such that ρ-gap-3SAT is NP-hard. We show one direction

below.

Definition 22.7 ρ-gap-3SAT is a promise decision problem where we are given a 3-CNF formula ϕ with the promise

that either

1. OPT(ϕ) = 1, or

2. OPT(ϕ)< ρ
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and we must decide which. If ϕ does not fall in either case (i.e. if ρ ≤ OPT(ϕ) < 1), our algorithm is allowed to

output anything.

Theorem 22.8 There exists ρ ∈ (0,1) such that ρ-gap-3SAT is NP-hard.

Proof: We give a polynomial time reduction from ρ-gap-qCSP, which is NP-hard for some constants q,ρ by the

PCP theorem, to ρ′-gap-3SAT. In this reduction, if ρ = 1− ε, then ρ′ = 1− ε/(q2q).

Given an input ϕ = (ϕ1, . . . ,ϕm) for ρ-gap-qCSP, for each i we know that ϕ̄i depends on at most q variables

(where f̄ denotes the negation of function f , i.e. 1− f ). Thus we can write ϕ̄i in disjunctive normal form (DNF), i.e.

as an OR of clauses where each clause is an AND of literals, and furthermore each clause contains exactly q literals.

The number of clauses is at most 2q. Thus by De Morgan’s laws, we can write ϕi = ¯̄ϕi as a q-CNF (an AND of ORs)

with at most 2q clauses. We can then transform the q-CNF to a 3-CNF by increasing the number of clauses by a

factor of at most q. For example, a clause that was formerly

(a∨b∨ c∨d∨ e)

can be replaced by

(a∨b∨ x)∧ (x̄∨ c∨ y)∧ (ȳ∨d∨ e).

We leave it as an exercise to the reader to verify that after performing the above transformation to all clauses in a

q-CNF, the original q-CNF is satisfiable iff the transformed version is also satisfiable. The above gives us a 3-CNF

ϕ′i that is satisfiable iff ϕi is. We then define ϕ′ =
∧m

i=1 ϕ′i.

Now, if ϕ is a YES instance, then all the ϕ′i are simultaneously satisfiable, so ϕ′ is a satisfiable 3SAT instance.

If ϕ is a NO instance, then no assignment to the variables can satisfy more than an ε-fraction of the constraints ϕi

(where ε = 1−ρ). In other words, at least one clause in ϕ′i must not be satisfied for an ε-fraction of the formulae

ϕ′i. Since each ϕ′i has at most q2q clauses, this implies that no more than an ε/(q2q)-fraction of clauses in ϕ′ can be

satisfied by any assignment, giving the theorem statement for ρ′ = 1− ε/(q2q) as desired.

22.2 Label cover, parallel repetition, and 2-prover 1-round games

Although the PCP theorem provides us with NP-hardness of various gap decision problems (or also, hardness of

approximation for various optimization problems), the constant factors gaps ρ that come out of the PCP theorem

tend to be quite weak. In this section we describe a theorem of Raz, the “parallel repetition theorem” [Raz98], which

shows how to get better gaps for many problems out of the PCP theorem.
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Before doing so, we define the “label cover” problem introduced in [AL97].

Definition 22.9 In the LabelCover(Σ) problem, we are given as input a bipartite graph G = (V,E) with bipartition

(L,R) (the “left” and “right” vertex sets). The graph is left-regular; that is, all vertices in L have the same degree.

Furthermore, in the input for each edge e=(u,v) we are given a constraint Πe : Σ→Σ. For any assignment σ :V→Σ

of elements of the alphabet Σ to the vertices, we say a constraint Πe for e = (u,v) is satisfied if σ(v) = Πe(σ(u)).

For an input ϕ, we let OPT(ϕ) denote the maximum fraction of edges that can be satisfied with an assignment. Then

in the ρ-gap-LabelCover(Σ) problem, we are given as input some ϕ with the promise that either

1. OPT(ϕ) = 1, or

2. OPT(ϕ)< ρ

and we must decide which.

Lemma 22.10 There is a constant ρ ∈ (0,1) such that ρ-gap-LabelCover(Σ) is NP-hard.

Proof: We reduce from ρ′-gap-3SAT for a constant ρ′ such that ρ′-gap-3SAT is NP-hard. For a 3SAT instance ϕ

with clauses C1, . . . ,Cm and variables x1, . . . ,xn, we create a bipartite graph with m vertices on the left and n vertices

on the right, corresponding to the clauses and vertices, respectively. An edge exists from C1 to x j iff variable x j

participates in clause Ci. The alphabet Σ is {0,1, . . . ,6}. An assignment σ : V → Σ should be interpreted as follows.

Each clause in a 3SAT instance can be satisfied in one of 7 ways, and the label σ(v) of a vertex v∈ L tells us which of

these 7 ways it would like to be satisfied. That is, if a clause C looks like, say, x1∨ x̄4∨x7, then there are 23 = 8 ways

to assign values to x1,x4,x7, and all but one of these ways satisfies C (namely the assignment (x1,x4,x7) = (0,1,0)

fails to satisfy C). Labels σ(v) for variable vertices v ∈ R should be 0 or 1, corresponding to whether that variable

should be set to 0 or 1. Then for an edge e from clause Ci to variable x j, the function Πe is simply a consistency

check; for each of the 7 possible labels ` for Ci, Πe(`) ∈ {0,1} is the value for variable x j which is consistent with

the satisfying assignment for Ci that corresponds to label `.

Note that in a YES instance for ϕ, there is a labeling to the vertex set such that all Πe are satisfied. In a

NO instance, no assignment can satisfy more than an ε′-fraction of clauses in ϕ for ε′ = 1− ρ′. Thus for any

unsatisfied clause C, at least one of the three edges leaving C must fail our consistency test, implying at most an

ε′/3-fraction of edges in the LabelCover instance can be satisfied. Thus we conclude ρ-gap-LabelCover(Σ) is NP-

hard for ρ = 1− ε/3.
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Although Lemma 22.10 tells us that ρ-gap-LabelCover(Σ) is NP-hard, the ρ that comes out of the proof is

extremely close to 1. This is where parallel repetition [Raz98] comes in. Parallel repetition tells us that for any

constant ε > 0, there exists a Σ such that ρ-gap-LabelCover(Σ) is NP-hard (in fact |Σ| will be at most poly(1/ε)).

Before stating the parallel repetition theorem, we first introduce 2-prover 1-round games.

Definition 22.11 In a 2-prover 1-round game G , there are two provers P1 and P2, as well as:

• An answer set A.

• A set of questions X that can be asked to P1 (and Y to P2).

• A probability distribution µ on X×Y .

• A predicate V : X×Y ×A×A→{0,1}.

• Strategies f1 : X → A and f2 : Y → A.

In this game a verifier picks (x,y) ∈ X×Y distributed according to µ then sends x to P1 and y to P2. The verifier

then accepts iff V (x,y, f1(x), f2(y)) = 1, in which case we say the provers win. If V (x,y, f1(x), f2(y)) = 0, then the

provers lose. The value val(G) denotes the maximum possible probability of winning (under distribution µ) if P1,P2

pick their strategies f1, f2 optimally.

Note that an instance G of LabelCover(Σ) can be viewed as a 2-prover 1-round game. Specifically A = Σ,X =

L,Y = R. The distribution µ is the distribution on L×R induced by picking a random edge e ∈ E. The strategies

f1, f2 are simply restrictions of σ : V → Σ to L and R, respectively. The predicate V (u,v,a,b) is 1 iff b = Π(u,v)(a).

For this game G , we then have val(G) =OPT(G). Thus for ρ-gap-LabelCover(Σ), either val(G) = 1 (if the instance

is satisfiable), or it is at most ρ. In the latter case, essentially the provers are trying to pick assignments, or “strategies

f1, f2”, so as to maximize the probability that they trick the verifier into thinking that the instance is satisfiable.

As we saw with LabelCover, the gap for which hardness follows from the PCP theorem is quite small (i.e. ρ

is very close to 1). Fortnow, Rompel, and Sipser then proposed parallel repetition of a game as a way to increase

the gap, i.e. to decrease ρ [FRS88]. In the k-fold parallel repetition G⊗k of a game G , the answer set becomes Ak,

and the set of questions becomes Xk and Y k for P1,P2, respectively. The probability distribution is the k-fold product

distribution µk (i.e. the verifier pickers (x1,y1), . . . ,(xk,yk) each independently from µ). The predicate V k is then

defined by

V k((x1, . . . ,xk),(y1, . . . ,yk),(a1, . . . ,ak),(b1, . . . ,bk)) =
k∧

i=1

V (xi,yi,ai,bi).
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For label cover, this corresponds to converting an instance G into a new instance G⊗k with left vertex set Lk, right

vertex set Rk, alphabet Σk, and where e = ((u1, . . . ,uk),(v1, . . . ,vk)) is in the edge set of G⊗k iff (ui,vi) ∈ E for each

i ∈ {1, . . . ,k}. Furthermore, we would define Π⊗k
e : Σk→ Σk by Π⊗k

e (σ1, . . . ,σk) = (Π(u1,v1)(σ1), . . . ,Π(uk,vk)(σk)).

The intuition for why parallel repetition might decrease the value of the game is as follows. If success of the

two provers across the k repetitions had been independent, then we would have exponential decay in the value:

val(G⊗k) = val(G)k. Unfortunately there is no reason for them to be independent. Even though the (xi,yi) are

independent, the function f⊗k
1 in the repeated game is allowed to be a function of the entire tuple (x1, . . . ,xk) (and

similarly for f2). Thus each prover can choose a strategy that bases its answer on the entire set of questions, rather

than answering each question individually. In this way, they can hope to correlate their failure to answer questions

well across the k repetitions. And in fact, as we will now see via an example of Feige, it is possible for them to do

so to their advantage!

Consider the following coin game C . The answer set is A = {P1,P2}×{0,1}. The question sets are X = Y =

{0,1}. The distribution µ is uniform on X ×Y . The predicate V is such that V (x,y,(P,a),(P′,b)) = 1 iff either

(P = P′ = P1 and a = b = x) or (P = P′ = P2 and a = b = y). In other words, the verifier flips two fair coins c1,c2 and

sends ci to prover Pi. The provers then have to, without communicating with each other, agree on the same prover

and correctly guess the coin flip of that prover.

Lemma 22.12 val(C ) = 1/2

Proof: Achieving value 1/2 is easy: the two provers simply always output (P1,0). In this way the two provers

always agree on the same prover, namely P1, and P1’s coin is 0 with probability 1/2.

Note also that the value cannot possibly be larger than 1/2, since one of the two provers must guess the coin

value of the other prover to succeed with absolutely no information about their coin, so they cannot do better than

random guessing.

If parallel repetition had behaved perfectly the way we wanted, we would have val(C⊗2) = 1/4. However, this

is not the case.

Lemma 22.13 val(C⊗2) = 1/2

Proof: For a similar reason as above, val(C⊗2) cannot be larger than 1/2.

Now we show that 1/2 is achievable. The two provers P1,P2 play using the following strategy. In the first

round, they both guess the coin value for P1’s first coin. In the second round, they both guess the coin value for P2’s
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second coin. Furthermore, in these guesses, they both assume that a probabilistic event E occurred, defined as the

event that P1’s first had the same outcome as P2’s second coin. Note that they can carry out this strategy: for their

first answer, P1 knows his own coin and returns that, and P2 knows his second coin so he guesses that for P1’s first

coin (and similarly for the second round of the game). This pair of strategy causes the verifier to accept exactly when

event E occurs, but P(E) = 1/2, so val(C⊗2) = 1/2.

From the above example we see that parallel repetition does not perfectly reduce the value of the game, but

nevertheless, Raz showed that it almost does in [Raz98] (the proof was later simplified by Holenstein [Hol09]).

Theorem 22.14 (Parallel repetition theorem [Raz98]) For any 2-prover 1-round game G with val(G) < 1−α,

there exists a constant c > 0 depending only on the game (specifically, depending only on |A| and α) such that for

all integers k > 0

val(G⊗k)≤ (1−α
3)ck.

For example, for the coin game above even though we saw that it is not true that val(C⊗k) ≤ val(C )k, it was

shown by Feige that val(C⊗k) ≤ (1/
√

2)k (and furthermore, val(C⊗k) exactly equals (1/
√

2)k when k is even)

[Fei91]. Raz’s theorem is more general, however, and applies to any 2-prover 1-round game (or, as relevant for us,

any instance of LabelCover(Σ)).

The desired parallel repetition corollary for us is the following.

Corollary 22.15 For any ε > 0 there exists Σ, |Σ| ≤ poly(1/ε), such that ε-gap-LabelCover(Σ) is NP-hard.

It is beyond the scope of this course, but the above corollary can be used, for example, to show that Set Cover

has no C-approximation for any constant C unless P = NP. It can also be used to show that, for some fixed constant

β > 0, Set Cover has no β logn-approximation unless SAT ∈ DTIME(nO(log logn)). See for example the Lecture 14

and 15 notes at [Gur05].
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