
CS125 Lecture 23 Fall 2016

In this lecture we will prove a weaker version of the PCP theorem, namely that NP⊆ PCP(poly(n),q) for some

universal constant q > 0. The treatment here follows closely the exposition in [AB09], Sections 18.4 and 19.3.2.

Before delivering the proof, we give a crash course in some relevant coding theory.

23.1 Communication with noise, and error-correcting codes

Imagine that Alice wants to send a message to Bob over a noisy channel. That is, her message is some string

M ∈ {0,1}k, and the medium by which she sends the message (e-mail over a sequence of network links, postal mail,

carrier pigeon, etc.) can part of what she sends to Bob (for example, a poor Internet link dropping packets). Alice

wants to send a “robust” version M′ of her message M such that, even after corruption by the channel, Bob can

recover M exactly only having access to a corrupted version of M′. M′ is typically called an encoding of message M.

There are two main classes of noisy channels studied, due to Shannon [Sha48] and Hamming [Ham50]. In the

Shannon class of channels, it is assumed that the channel corrupts transmissions probabilistically. For example, if

some encoded message, or codeword, C ∈ {0,1}n is sent via the channel, the “Binary Symmetric Channel” BSCp

flips each bit of C independently with probability p (and sends the bit faithfully with probability 1− p). In the

Hamming world, however, the channel corrupts transmissions adversarially. That is to say, whereas a channel such

as BSCp corrupts pn bits in expectation such that bits are corrupted independently at random, in the Hamming world

the channel is adversarial and is given a budget pn. The adversarial channel is then allowed to choose any subset of

at most pn bits and flip them.

Some jargon: In this lecture, what will be relevant for a proof of the weak PCP theorem is the Hamming view.

For us, a code is simply a subset C ⊆ [q]n, where [q] denotes the set {0, . . . ,q− 1}. The value q is called the

alphabet size, and n is referred to as the block length. In the above introduction we discussed codewords with

q = 2, but in the general case q may be larger (and we allow the adversarial channel to corrupt some fraction of

the codeword symbols arbitrarily). For two codewords c,c′ ∈ C , we let ∆(c,c′) = |{i ∈ [n] : ci 6= c′i}|/n denote the

relative Hamming distance of c,c′, and δ = δ(C) = minc 6=c′∈C ∆(c,c′) denotes the relative distance of the code C .

Note that if a codeword c is transmitted and corrupted to some new string c̃∈ [q]n, then as long as ∆(c, c̃)< δ/2, then

the receiver has enough knowledge to recover c uniquely. This is because if ∆(c̃,c′) < δ/2 for another c′ 6= c ∈ C

then ∆(c,c′) ≤ ∆(c, c̃)+∆(c̃,c′) < δ by the triangle inequality, which contradicts the definition of δ. Lastly, if we

23-1

Lecture 23 23-2

eliminate some elements of C so that it has exactly qk elements for some integer k, then we can injectively encode

messages in [q]k to distinct codewords in C . Then k/n is called the rate of the code, and gives a measure of the level

of information-theoretic redundancy due to sending message encodings rather than raw messages (rate near 1 means

almost no redundancy, while low rate means high redundancy).

We will specifically use the Walsh-Hadamard code in this lecture. Given a message x ∈ {0,1}k, the Walsh-

Hadamard encoding WH(x) ∈ {0,1}2k
works as follows. We view x as indexing a linear function

fx : {0,1}k→{0,1}k, with fx(y) = 〈x,y〉 (23.1)

where the inner product is taken modulo 2. That is, fx(y)= (∑k
i=1 xiyi) mod 2. We then define WH(x)= (fx(y))y∈{0,1}k

to be the truth table of the function fx. Note the rate of this code is terrible, but the relative distance is the best one

could hope for from a binary code. The proof of the following is left as an exercise for the reader.

Theorem 23.1 For any integer k ≥ 1, the Walsh-Hadamard code has rate k/2k and relative distance exactly 1/2

(and hence allows for correcting any fraction of errors strictly less than 1/4).

Note the decoding algorithm is simple, and runs in exponential time: given a (potentially corrupted) codeword

c̃, the algorithm loops over all c ∈ C and returns the first one such that ∆(c, c̃)< 1/4.

Linearity testing and self-correctability. In proving the weak PCP theorem, we will use more about the Walsh-

Hadamard code than it simply being a code. One of these additional properties is self-correctability. We now state a

definition and some lemmas.

Definition 23.2 We say two functions f ,g : {0,1}k→{0,1} are ρ-close if

P(f (x) = g(x))≥ ρ,

where x is drawn from the uniform distribution over {0,1}k. For a class of functions F , we say f is ρ-close to F if

there exists g ∈ F such that f is ρ-close to g.

We will be interested in the case that F is the class of linear functions mapping {0,1}k to {0,1}, i.e. F = { f :

{0,1}k → {0,1} : ∃u ∈ {0,1}k s.t. f (x) = 〈u,x〉}. Note the elements of this F are in 1-to-1 correspondence with

Walsh-Hadamard codewords. If f is ρ-close to this particular class F , we say that f is ρ-close to a linear function.

Lecture 23 23-3

We now state a theorem about a very natural algorithm to test whether or not a function is close to linear, called

the BLR linearity test, named after the authors who first suggested and analyzed the test (Blum, Luby, and Rubinfeld)

[BLR93]. The BLR test works as follows: pick x,y ∈ {0,1}k independently and uniformly at random, then test

whether f (x) + f (y) = f (x + y) (where addition of vectors is component-wise mod 2 addition). The following

provides a correctness guarantee for this probabilistic test.

Theorem 23.3 If Px,y(f (x)+ f (y) = f (x+ y))≥ ρ for some ρ≥ 1/2, then f is ρ-close to a linear function.

Recall that Walsh-Hadamard codewords are simply truth tables of linear functions. Also, any transmitted

c̃ ∈ {0,1}2k
can be viewed as a function f̃ : {0,1}k → {0,1} where f̃ (x) = c̃x. Thus if c̃ was obtained by altering

an ε-fraction of entries of a Walsh-Hadamard codeword, that is equivalent to c̃ representing a function f̃ that is

(1− ε)-close to linear. The following self-correctability statement is then a corollary of Theorem 23.3, and implies

that such corrupted transmissions c̃, for small ε, can be very efficiently corrected — in constant time! That is, if c̃

is a corruption of a Walsh-Hadamard codeword c for small ε, then there is a randomized algorithm which, for any

index x ∈ {0,1}k, one can recover cx with good probability by only looking at a constant number of entries of c̃. One

does this by computing c̃y + c̃x+y for a uniformly random y ∈ {0,1}k.

Corollary 23.4 Suppose f̃ is (1− ε)-close to some linear function f . Then for any x ∈ {0,1}k, Py(f (x) = f̃ (y)+

f̃ (x+ y))≥ 1−2ε.

Proof: The values y,x+ y are uniformly random in {0,1}k (although they are not independent). Thus P(f̃ (y) 6=

f (y)),P(f̃ (x+y) 6= f (x+y))≤ ε. Thus by a union bound, the probability that either differs from the corresponding

f values is at most 2ε, i.e. the probability that neither differs is at least 1− 2ε. But by linearity, f (y)+ f (x+ y) =

f (y+ x+ y) = f (x) (since component-wise addition is taken modulo 2).

23.1.1 Proof of Theorem 23.3

In this subsection we prove Theorem 23.3. You are not responsible for the material in this subsection for this course,

and hence you may feel free to skip reading this subsection and go straight to Section 23.2 if you wish. Regardless,

the proof of Theorem 23.3 is included here for the interested reader.

For the analysis of the BLR test, it is convenient to work over {−1,1}k instead of {0,1}k, by interpreting −1

as 1 and 1 as 0 (i.e. a bit b ∈ {0,1} is mapped to (−1)b). Now if we have a function f : {−1,1}k→ R, we can write

f as a 2k-dimensional vector, which is the evaluation table of f . A typical way to write vectors is in the standard

Lecture 23 23-4

basis: f = ∑x∈{−1,1}k f (x) · ex, where ex is the standard basis vector corresponding to x (or, as a function, it is the

function satisfying ex(z) = 0 if z 6= x, and ex(x) = 1). We can also work over do other bases. Define an inner product

〈.〉 on functions defined by 〈 f ,g〉= Ex∈{−1,1}k f (x)g(x). Consider the set of linear functions χS for S ⊆ [n], defined

by χS(x) = ∏i∈S xi. One can check as an exercise that the following lemma holds, i.e. the set of linear functions {χS}

forms an orthonormal basis for functions mapping {−1,1}k to R (or equivalently for the set of all vectors in R2k
).

Lemma 23.5 For all S 6= T ⊆ [n], 〈χS,χS〉= 1 and 〈χS,χT 〉= 0.

The set {χS}S⊆[n] is known as the Fourier basis over the boolean hypercube {−1,1}k. As it is an orthonormal

basis, we can write any function f : {−1,1}k→ R as

f = ∑
S⊆[n]
〈 f ,χS〉χS.

The coefficients 〈 f ,χS〉 are known as the Fourier coefficients of f , and 〈 f ,χS〉 is usually denoted f̂S. The following

corollary is then immediate from definitions and Lemma 23.5.

Corollary 23.6 . For any f ,g : {−1,1}k → R, 〈 f ,g〉 = ∑S⊆[n] f̂SĝS, and 〈 f , f 〉 = ∑S⊆[n] f̂ 2
S . The latter is known as

Parseval’s identity.

The key insight is then that 〈 f ,g〉 equals ε > 0 is equivalent to the statement that f ,g agree on an a (1/2+ε/2)-

fraction of vectors in {−1,1}k. Thus Theorem 23.3 is equivalent to the statement that

f : {−1,1}n→{−1,1} satisfies P
x,y∈{−1,1}k

(f (xy) = f (x) f (y))≥ 1/2+ ε =⇒∃S⊆ [n], f̂S ≥ 2ε. (23.2)

We now prove (23.2).

Note E f (xy) f (x) f (y) = P(f (xy) = f (x) f (y))−P(f (xy) 6= f (x) f (y))≥ 2ε. Thus

2ε≤ E
x,y

f (xy) f (x) f (y) = E
x,y
(∑

S
f̂SχS(xy))(∑

T
f̂T χT (x))(∑

R
f̂RχR(y))

= E
x,y ∑

S,T,R
f̂S f̂T f̂RχS(x)χS(y)χT (x)χR(y)

= ∑
S,T,R

f̂S f̂T f̂R(E
x

χS(x)χT (x))(E
y

χS(y)χR(y))

= ∑
S

f̂ 3
S (unless S = T = R, expectation is 0)

≤ (max
S

f̂S) · (∑
S

f̂ 2
S)

= max
S

f̂S.

The last line uses Parseval’s identity, since ∑S f̂ 2
S = 〈 f , f 〉= 1, since the range of f is {−1,1}.

Lecture 23 23-5

23.2 A weak PCP theorem

We will provide the proof system for a particular NP-complete problem: QUADEQ= {〈A,b〉 :∃U ∈{0,1}n2
with Ui, j =

uiu j for some u ∈ {0,1}n s.t. AU = b}. Here 〈A,b〉 is an encoding of an m×n2 binary matrix A and m-dimensional

binary vector b, and the language consists of all such A,b pairs such that the quadratic equation AU = b has a

solution. That is, we have a system of m equations each of the for ∑i, j A(r)
i, j uiu j = br for r = 1, . . . ,m.

Lemma 23.7 QUADEQ is NP-complete.

Proof: It is in NP since a witness that can be checked in polynomial-time is a solution u ∈ {0,1}n to AU = b (recall

Ui, j = uiu j). To show that it is NP-hard, we reduce from 3SAT. Suppose we have a 3SAT instance ϕ with m clauses

whose rth clause Cr is, say, (xi1 ∨ xi2 ∨ x̄i3). From this we derive a quadratic equation arxi1 +brxi2 + cr(1− xi3) = 1,

and in this way we create m equations from the m clauses. We claim this system of equations AX = b has a solution

x iff ϕ is satisfiable. If AX = b has a solution, then the same vector x itself is a solution to ϕ. For the converse, if

ϕ has a solution x∗, we use the same x∗ to solve AX = b. In addition, for the rth clause for each r, we set ar,br,cr

so that exactly one of the three products in the sum is 1 and the other two are zero; this ensures that two 1’s do not

sum to a 0 and yield 0 modulo 2. For example, if the rth clause is x1 ∨ x̄2 ∨ x4 and a satisfying assignment x∗ has

x∗1 = 1,x∗2 = 0,4= 0, then this clause is satisfied by both x1 and x2. We then pick one of these literals that satisfies the

clause arbitrarily, say x1, and set the corresponding ar to 1. We then set br = cr = 0 (we could have also set br = 1

and ar = cr = 0).

Corollary 23.8 If there is a proof system for QUADEQ in which the verifier flips poly(mn) bits and checks q = O(1)

bits of the proof to have completeness 1 and soundness 1/2, then NP⊆ PCP(poly(n),q).

Proof: Let L be any language in NP, and let f be a poly-time computable reduction from L to QUADEQ. Then a

proof system for L is as follows: a verifier for L first computes f (x), then runs the verifier for QUADEQ on f (x).

Corollary 23.8 tells us that in order to show NP ⊆ PCP(poly(n),q) for some constant q, it suffices to specify

such a proof system for QUADEQ. We do so now.

The verifier V for QUADEQ is given A,b and expects a proof of the form (c,c′) = (WH(u),WH(U)) for a

solution u∈ {0,1}n to some system of quadratic equations AU = b (recall U ∈ {0,1}n2
is defined to have Ui, j = uiu j).

Thus c ∈ {0,1}2n
and c′ ∈ {0,1}2n2

. Given such a proof, V works in three phases as follows.

Lecture 23 23-6

1. First verify that c,c′ are both .999-close to being Walsh-Hadamard codewords (that is, make sure that the

functions f̃ , g̃ that c,c′ represent, respectively, are both .999-close to linear functions f ,g). If not, the verifier

rejects.

2. Then, verify that g is faithful to the format of U , i.e. that g is (close to) the function fW (z) = 〈W,z〉 for

Wi, j = wiw j, for w being such that f = fw as defined in Equation 23.1. If not, the verifier rejects.

3. Finally, verify that the W represented by g is a solution to AU = b (i.e. verify that AW = b) and reject if not.

For all the phases (1)-(3) above, a verifier that can only read a constant number of entries in c,c′ cannot perform

the verification precisely, but will do so using random probes such that the completeness is 1 and soundness is 1/2.

We now show how to implement the phases.

Phase 1. Given the BLR linearity test, this is the easiest phase to implement. If f̃ is not .999-linear, then the BLR

test will fail with probability at least 1/1000. Thus if we repeat the BLR test 1000 · dln(2/η)e times, the probability

that the BLR test never outputs “fail” is at most (1−1/1000)1000ln(2/η) ≤ η/2 (using that (1−1/x)x ≤ 1/e for any

x > 0). The same holds true for testing g̃. Thus by a union bound, if either of f̃ , g̃ are not .999-linear, the BLR test

will output “fail” with probability at least 1−η. If η is a fixed constant, then the number of queries to c,c′ is a fixed

constant, and we can set η to be as small a constant as we like (we will set η = 1/8).

Phase 2. For phases 2 and 3, we will assume that we have query access to f and g. This can be implemented using

self-correctability (Corollary 23.4). Since f̃ , g̃ are .999-close to linear, the probability that any query to f or g fails

is at most .002 = 1/500. Thus as long as our total number of queries to f ,g is at most b500/8c = 62 in these two

phases, which we will ensure, the probability that all our queries to f ,g succeed is at least 7/8 (by a union bound).

Now for phase 2: since f is linear, we have f (x) = fu(x) for some u ∈ {0,1}n and g(x) = gw(x) for some

w ∈ {0,1}n2
(for fu,gw as defined in Equation 23.1). We now wish to make sure that wi, j = uiu j for all i, j (viewing

the pair (i, j) as an index into {1, . . . ,n2}). That is, if W is defined to be the matrix whose (i, j) entry is wi, j, then we

wish to verify that W =U . The verifier will do the following t times for some t to be specified: pick r,r′ ∈ {0,1}n

independently and uniformly at random, and reject if for any of these t trials it holds that f (r) f (r′) 6= g(rr′T), treating

rr′T as an n2-dimensional vector (note that rrT is the n×n matrix whose (i, j) entry is rir′j).

Lemma 23.9 If W 6=U, then Pr,r′(f (r) f (r′) 6= g(rr′T))≥ 1/4.

Lecture 23 23-7

Proof: We have f (r) f (r′) = (∑i uiri) · (∑i uir′i) = rTUr′. We also have g(rr′T) = ∑i, j wi, jrir′j = rTWr′. Thus

f (r) f (r′) = g(rr′T) iff rT Pr′ = 0 for P =W −U , which we show happens with probability at most 3/4 if P 6= 0. If

P 6= 0 then Pr′(Pr′ 6= 0) ≥ 1/2 — we already proved this in Lecture 18 in our analysis of Freivalds’ algorithm (see

Lemma 18.7 in the Lecture 18 notes)! Then conditioned on v = Pr′ 6= 0, Pr(rT v) 6= 0 is exactly 1/2. This is because

if v 6= 0 then vi∗ = 1 for some i∗. But then the probability rT v is zero is exactly 1/2 over just the randomness of ri∗ ,

even if we condition on all the other ri values for i 6= i∗. Thus Pr,r′(rT Pr′ = 0)≥ (1/2)2 = 1/4.

We thus set t = 7 so that we make 7×3 = 21 queries to f ,g combined in phase 2. Then if W 6=U , our test fails

to declare so with probability at most (1−1/4)7 < 1/8.

Phase 3. Having used 21 queries to f ,g in phase 2, we can afford to make at most 62−21 = 41 queries in phase

3 (as mentioned in the beginning of the phase 2 discussion); we will fit well within this budget (we will only make

3 queries on phase 3!).

Recall we want to make sure that AU = b. That is, we want to make sure that for every k ∈ {1, . . . ,m}

∑
i, j

A(k)
i, j uiu j = bk

for A,b known to the verifier. (A(k)
i, j)(i, j)∈[n]×[n] is just some n2-dimensional vector ak, so this just amounts to checking

a single query g(ak) to verify that it comes out to bk. However, we cannot afford to check all ak, since there are m

of them and we only want to make a constant number of queries. Instead, we pick β1, . . . ,βm independent and

uniformly at random in {0,1} and query g(∑m
k=1 βkak), and verify that it equals ∑k βkbk. If all equations are satisfied,

this test succeeds with probability 1. If even one equation, say equation k∗, is unsatisfied, then this test fails with

probability exactly 1/2. This is because, even conditioned on all the βk for k 6= k∗, the probability that this test fails

just over the randomness of βk∗ is exactly 1/2 (exercise: justify this to yourself!). Thus U does not satisfy AU = b,

the probability that we do not output “fail” after three independent tests is 1/23 = 1/8.

Overall, we have perfect completeness in all three phases. For soundness, f̃ , g̃ are not each .999-linear, then we

output fail with probability at least 7/8 in phase 1. Since we only make 21+3 = 24 < 62 queries to f ,g in the rest

of the algorithm, the probability we succeed in all these queries is also at least 7/8 by the discussion at the beginning

of the phase 2 analysis. Phase 2 then succeeds with probability at least 7/8, and phase 3 also with probability at least

7/8. Thus by a union bound, the probability that we do not output “fail” is at most 1/8+1/8+1/8+1/8 = 1/2.

Lecture 23 23-8

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University

Press, 2009.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numerical

problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal,

29(2):147–160, 1950.

[Sha48] Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,

27:379–423, 623–656, 1948.

