
CS125 Lecture 7 Fall 2016

7.1 The Origin of Computer Science

Alan Mathison Turing (1912–1954)

“On Computable Numbers, with an Application to the Entscheidungsproblem” 1936
11/02/2006 06:02 PMturing.jpg 170!201 pixels

Page 1 of 1http://www.galha.org/image/turing.jpg

• 1936: Founded computer science as graduate student

• 1938–1945: WW II hero — breaking of German codes

• 1948: Almost qualified for UK Olympic team as marathon runner

• 1950: Seminal paper on AI — proposed Turing test

• 1952: Prosecuted for homosexuality, chose chemical castration over prison

• 1954: Suicide

• 1966: Turing Award introduced as highest prize in computer science

• 2009: Public apology by British government

• 2013: Pardon by Queen of England

[Dates from http://en.wikipedia.org/wiki/Alan_Turing]

7-1

Lecture 7 7-2

Q: What Problem Was Turing Trying to Solve?

David Hilbert

“Mathematical Problems” 1900

Can mathematics be fully axiomatized and automated?

Kurt Gödel

“On Formally Undecidable Propositions . . . ” 1931

Mathematics cannot be fully axiomatized: some true

statements will be unprovable.

Alonzo Church

“An Unsolvable Problem of Elementary Number

Theory” 1936

Independently of Turing: mathematics cannot be

automated — cannot algorithmically distinguish

provable from disprovable statements.

The Cliff’s Notes Version of History

Lecture 7 7-3

7.2 The Basic Turing Machine

Turing Machines 1

• Reading: Sipser, §3.1.

Turing Machines

Objective: Define a computational model that is

• General-purpose:

(as powerful as programming languages)

• Formally Simple:

(we can prove what cannot be computed)

Alan Mathison Turing

“On Computable Numbers, with an Application to the Entscheidungsproblem” 1936

CF also

• David Hilbert

“Mathematical Problems” 1900

• Kurt Gödel

“On Formally Undecidable Propositions . . . ” 1931

• Alonzo Church

“An Unsolvable Problem of Elementary Number Theory” 1936

The Basic Turing Machine

a! a b a!

F.C.

• Head can both read and write, and move in both directions

• Tape has unbounded length

• ! is the blank symbol. All but a finite number of tape squares are blank.

• Head can both read and write, and move in both directions

• Tape has unbounded length

• t is the blank symbol. All but a finite number of tape squares are blank.

• F.C. = finite-state control.

Def: A (deterministic) Turing Machine (TM) is a 6-tuple (Q,Σ,Γ,δ,q0,qhalt), where:

• Q is a finite set of states, containing a start state q0 and a halt state qhalt.

• Σ is the input alphabet

• Γ is the tape alphabet, containing Σ and t ∈ Γ−Σ.

• δ : Q×Γ→ Q×Γ×{L,R} is the transition function

Interpretation:

• δ(q,σ) = (q′,σ′,R)

– Rewrite σ as σ′ in current cell

– Switch from state q to state q′

– And move right

• δ(q,σ) = (q′,σ′,L)

– Same, but move left

– Unless at left end of tape, in which case stay put

Lecture 7 7-4

7.3 An Example

A Turing machine to determine whether a string is an even-length palindrome over alphabet Σ = {a,b}:

Lecture 7 7-5

7.4 Formalizing Computation of TMs

• A configuration of a TM M = (Q,Σ,Γ,δ,q0,qhalt) is denoted uqv, where q ∈ Q, u,v ∈ Γ∗.

– Tape contents = uv followed by all blanks

– State = q

– Head on first symbol of v.

– Equivalent to uqv′, where v′ = vt.

• Start configuration = q0w, where w is input.

• One step of computation (denoted C⇒M C′): for C = uqσv with q ∈ Q\{qhalt}, u,v ∈ Γ∗, σ ∈ Γ,

– If δ(q,σ) = (q′,σ′,R), then C′ = uσ′q′v.

– If δ(q,σ) = (q′,σ′,L), and u = u′τ for u′ ∈ Γ∗ and τ ∈ Gamma, then C′ = u′q′τσ′v.

– If δ(q,σ) = (q′,σ′,L), and u = ε, then C′ = q′σ′v.

• If q = qhalt, computation halts (C′ = C) and the output is the contents of the tape to the left of the first blank

symbol.

Def: TM M = (Q,Σ,Γ,δ,q0,qhalt) solves computational problem f : Σ∗⇒ 2(Γ\{t})
∗

if for every w ∈ Σ∗, there is a

sequence C0, . . . ,Ct of configurations of M such that:

1. C0 = q0w

2. Ci−1⇒M Ci for i = 1, . . . , t

3. In Ct , M is state qhalt and the contents of the tape to the left of the first blank symbol is an element of f (w).

Running time: Defined analogously to Word-RAM, e.g. T (n) = maximum number of steps taken by M on all

inputs of length n (cf. T (n,k) for Word-RAM.) algorithms.

Lecture 7 7-6

7.5 Multitape TMs

There are a number of seemingly arbitrary choices in the definition of a TM (albeit less so than in the Word-RAM).

We want to argue that these choices don’t affect the power of the model. For example, what about multiple tapes?

Variants of TMs, Church-Turing Thesis 2

More extensions

• Adding multiple tapes does not increase power of TMs

b!a

! a a a

!

b

c

q 2-tape TM

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)

• Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into 2k tracks:

– k tracks for tape symbols

– k tracks for head position markers (one in each track)

b!a

! a a a

!

b

c

↑

↑

$

(Sipser does different simulation.)

• To simulate one move of the k-tape TM:

• Note that the “equivalence” in ability to compute functions or decide languages does not mean
comparable speed.

e.g. A standard TM can decide L = {w#w : w ∈ Σ∗} in time ∼ |w|2. But there is a
linear-time 2-tape decider.

• Thm: If M is a multitape TM that takes time T (w) when run on input w, then there is a 1-tape
machine M ′ and a constant c such that M ′ simulates M and takes at most c T (w)2 steps on
input w

Convention: First tape used for I/O, like standard TM; Other tapes available for scratch work.

Formally, a k-tape TM has a transition function δ : Q×Γk→ Q×Γk×{L,R}k.

Simulation of multiple tapes by one

• Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into 2k tracks:

– k tracks for tape symbols

– k tracks for head position markers (one in each track)

Variants of TMs, Church-Turing Thesis 2

More extensions

• Adding multiple tapes does not increase power of TMs

b!a

! a a a

!

b

c

q 2-tape TM

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)

• Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into 2k tracks:

– k tracks for tape symbols

– k tracks for head position markers (one in each track)

b!a

! a a a

!

b

c

↑

↑

$

(Sipser does different simulation.)

• To simulate one move of the k-tape TM:

• Note that the “equivalence” in ability to compute functions or decide languages does not mean
comparable speed.

e.g. A standard TM can decide L = {w#w : w ∈ Σ∗} in time ∼ |w|2. But there is a
linear-time 2-tape decider.

• Thm: If M is a multitape TM that takes time T (w) when run on input w, then there is a 1-tape
machine M ′ and a constant c such that M ′ simulates M and takes at most c T (w)2 steps on
input w

• To simulate one move of the k-tape TM:

– Start with the head on the left endmarker

– Scan down the tape, remembering in the finite control the symbols “scanned” by the k heads

– Scan back up the tape, revising each track in the vicinity of its head marker

– Return the head to the left endmarker

• Also need transitions to reformat input and output at start and end of computation.

Lecture 7 7-7

Speed of the Simulation. Note that the “equivalence” in ability to solve computational problems does not mean

comparable speed.

e.g. A standard TM can recognize palindromes in time O(n2) (as we saw), and it is known that this is the best

possible. But there is an O(n)-time 2-tape TM for the same problem:

And this is tight — the simulation above gives at most a quadratic slowdown:

Theorem 7.1 If M is a multitape TM, then there is a constant c and 1-tape TM M′ such that on every input w ∈ Σ∗,

M′ produces the same output as M (or runs forever if M does), and if M halts in time T (w) ≥ |w|, then M′ halts in

time at most c ·T (w)2.

7.6 RAMs vs. TMs

Now we show that, even though TMs may seem much simpler and weaker than Word-RAMs, they are actually

equivalent in power.

Theorem 7.2 For every Word-RAM program P, there is a multitape TM M such that for every input x=(x1, . . . ,xn)∈

N∗, it holds that M(〈x〉) has the “same behavior” as P on input x and size parameter k = max{x1, ...,xn,m} where

m is the largest constant occurring in P.

• 〈x〉 denotes any reasonable encoding of k,x over the input alphabet Σ of M. For example, we can take Σ =

{0,1,‖} and 〈x〉= 〈x1〉‖ · · ·‖〈xn〉, where 〈y〉 denotes the binary representation of y ∈ N.

• If P halts with output y ∈ N∗, then M will halt with output 〈y〉.

• If P does not halt, then M will also run forever.

• Efficiency: If P runs in time T = T (k,x)≥ |x|, then M will run in time at most T 2 ·poly(logT, logk).

Lecture 7 7-8

Simulating a Word RAM Program by a Multitape TM

• Tape 1: $M[0]‖M[1]‖· · ·‖M[S−1] (sequence of w-bit binary strings).

• Tape 2: S (in binary)

• Tape 3: w (in unary — sequence of w ones)

• Tape 4: i ∈ {0, . . . ,S−1} such that TM head on tape 1 is within M[i] (in binary)

• Tape 5: j ∈ {0, . . . ,w−1} such that TM head on tape 1 is at the j’th bit of M[i] (in unary)

• Tapes 6–(r+5): Registers R[0], . . . ,R[r−1] (in binary)

• Tape 7: scratch tape

• Keep track of program counter ` in state of M

The TM can carry out each of the following instructions in time poly(w) where w is the current word size:

• P̀ = “R[i]← R[j] op R[k]′′ for each of the word operations op we allow.

• If P̀ = “IF R[i] = 0, GOTO `”

• HALT

Each of the following can be implemented in time O(S ·w), where S is the current space bound:

• R[i]←M[R[j]]

• M[R[i]]← R[j]

• MALLOC

Throughout the computation S≤ T (here we use T ≥ n) and w≤ dlogmax{k+1,S}e ≤ logmax{k+1,T}.

Lecture 7 7-9

7.7 The Church–Turing Thesis

Many other models of computation are equivalent in power to Turing Machines:

• TMs with 2-dimensional tapes

• Word RAMs

• Integer RAMs

• General Grammars

• 2-counter machines

• Church’s λ-calculus (µ-recursive functions)

• Markov algorithms

• Your favorite programming language (C, Python, OCaml, . . .)

The equivalence of each to the others is a mathematical theorem. That these formal models of algorithms capture our

intuitive notion of algorithms is the Church–Turing Thesis. (Church’s thesis = partial recursive functions, Turing’s

thesis = TMs.) The Church–Turing Thesis is an extramathematical proposition, not subject to formal proof.

The Extended Church-Turing Thesis: Every “reasonable” model of computation can be simulated on a Turing

machine with only a polynomial slowdown.

Counterexamples?

• Integer RAMs.

• Randomized computation.

• Parallel computation.

• Analog computers.

• DNA computers.

• Quantum computers.

→ Extended C-T Thesis needs to be qualified with “sequential and deterministic” and “bounded work per step”.

Lecture 7 7-10

7.8 Languages and Complexity Classes

In classifying computational problems as solvable vs. efficiently solvable vs. unsolvable, it is convenient to re-

striction attention to decision problems — ones where the answer is YES or NO. These correspond to computing

functions f : Σ∗ → {0,1} (where 1=YES), or equivalently to deciding whether the input string is a particular lan-

guage L⊆ Σ∗ (namely, the set of strings where the answer is YES).

Motivations for focus on decision problems:

• Don’t need to worry about intractability because of | f (x)| being long.

• Many computational problems of interest can be reformulated as an essentially equivalent decision problem.

Some Languages:

• PALINDROMES = {x ∈ Σ∗ : x = xR}.

• PRIMES = {〈N〉 : N is a prime number}.

• MINIMUMSPANNINGTREE = {〈G,w〉 : G a weighted graph with a minimum spanning tree of weight at most w}.

• RANK = {〈x1, . . . ,xn, `〉 : x1 is among the smallest ` items in x1, . . . ,xn}.

• 〈·〉 = any “reasonable” encoding as a string. Which choices of encoding can make the difference between a

computational problem being solvable or not? What about solvable in polynomial time?

– Graph as adjacency matrix vs. list of edges?

– Numbers in binary vs. base 10?

– Numbers in binary vs. unary?

Solvable Problems:

• A function f : Σ∗→ Σ∗ is called recursive or computable if there is an algorithm that computes f .

• A language L⊆ Σ∗ is called recursive or decidable if the characteristic function of L is recursive. An algorithm

that computes the characteristic function of L is also said to decide (membership in) the language L.

• R = {L : L is recursive}.

Lecture 7 7-11

• Does not depend on the choice of computational model (TMs vs. Word RAMs vs. Lambda Calculus)!

Efficiently Solvable Problems:

• L ∈ TIME(T (n)) if there is an algorithm deciding L that runs in time O(T (n)).

• Depends on the model of computation!

• So we should really write TIMERAM(T (n)), TIMETM(T (n)), etc. TIMETM(·) conventionally refers to multi-

tape TMs.

Polynomial Time:

• P =
⋃

c TIMETM(nc) =
⋃

c TIMERAM(nc)

• Same for all “reasonable” models of computation and “reasonable” encodings of inputs.

• Coarse approximation to “efficiently solvable.”

We have CF⊆ P⊆R⊆ 2Σ∗ , where CF is the class of context-free languages (i.e. languages that can be generated

by grammars as in the PROP programming problem from HW3).

Questions:

• Are there non-recursive languages?

• Are there recursive languages not in P?

• Are there “natural” languages not in R? In R\P?

• Is FACTORING in P?

• Is MST ∈ TIMERAM(O(n))? Is MST ∈ TIMETM(O(n))?

Lecture 7 7-12

• Can MULTIPLICATION be done in time O(n) on a Word-RAM? On a multitape TM?

...

7.9 Describing Algorithms

Formal Description

– Word-RAM code or TM 6-tuple or TM state diagram

– Only when we ask for it!

Implementation/Pseudocode Description

– Prose description of tape/memory contents, head movements (in case of TMs)

– High-level pseudocode and/or prose description of head movements,

– Omit details of states, transition functions, low-level RAM code (but do convince yourself that a TM/Word-

RAM can do what you’re describing!)

– Like our proofs that a TMs can simulate Multitape TMs can simulate Word-RAMs.

High-Level Description

– Most of the algorithms descriptions we’ve seen so far.

– Freely use other algorithms we’ve seen as subroutines.

– Provide enough detail to be convinced of correctness and runtime on a Word RAM (possibly using some

implementation-level specification or pseudocode to make things precise).

– Track number of executions of high-level steps, time for high-level steps (depends on size of data being

manipulated).

