
CS125 Lecture 8 Fall 2014

8.1 Introduction

Today we’ll talk about shortest path algorithms. There are 3 main variations of the shortest path problem on graphs:

the point-to-point shortest path problem (find the shortest path from s to t for given s to t); the single source shortest

path problem (find the shortest path from a given source s to all other vertices); and the all pairs shortest path

problem (find the shortest path between all pairs). Shortest path problems – particularly point-to-point problems

– have become very important of late. Just think about whatever online mapping service you like to use. We’ll

actually focus on single source and all-pairs algorithms; these are often used in subroutines in various ways, even

for point-to-point problems.

Background: Breadth First Search

Breadth First Search (BFS) is a way of exploring the part of the graph that is reachable from a particular vertex

(s in the algorithm below).

Procedure BFS (G(V,E),s ∈V )

graph G(V,E)
array[|V |] of integers dist

queue q;

dist[s] := 0

inject(q,s)
placed(s) := 1

while size(q) > 0

v := pop(q)
previsit(v)

for (v,w) ∈ E

if placed(w) = 0 then

inject(q,w)

placed(w) := 1

dist(w) = dist(v)+1

fi

rof

end while

end BFS
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BFS visits vertices in order of increasing distance from s. In fact, our BFS algorithm above labels each vertex

with the distance from s, or the number of edges in the shortest path from s to the vertex. For example, applied to

the graph in Figure 8.1, this algorithm labels the vertices (by the array dist) as shown.

Why are we sure that the array dist is the shortest-path distance from s? A simple induction proof suffices. It

is certainly true if the distance is zero (this happens only at s). And, if it is true for dist(v) = d, then it can be easily

shown to be true for values of dist equal to d+1 —any vertex that receives this value has an edge from a vertex with

dist d, and from no vertex with lower value of dist. Notice that vertices not reachable from s will not be visited or

labeled.

S
0 1 2

1

2 3

2

2

Figure 8.1: BFS of a directed graph

BFS runs, of course, in linear time O(|E|), under the assumption that |E| ≥ |V |. The reason is that BFS visits

each edge exactly once, and does a constant amount of work per edge.

Single-Source Shortest Paths (SSSP) —Nonnegative Lengths

What if each edge (v,w) of our graph has a length, a positive integer denoted length(v,w), and we wish to find

the shortest paths from s to all vertices reachable from it? BFS offers a possible solution. We can subdivide each

edge (u,v) into length(u,v) edges, by inserting length(u,v)− 1 “dummy” nodes, and then apply BFS to the new

graph. This algorithm solves the shortest-path problem in time O(∑(u,v)∈E length(u,v)). Unfortunately, this can be

very large —lengths could be in the thousands or millions. So we need to find a better way.

The problem is that this BFS-based algorithm will spend most of its time visiting “dummy” vertices; only
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occasionally will it do something truly interesting, like visit a vertex of the original graph. What we would like to

do is run this algorithm, but only do work for the “interesting” steps.

To do this, We need to generalize BFS. Instead of using a queue, we will instead use a heap or priority queue of

vertices. As we have seen, a heap is a data structure that keeps a set of objects, where each object has an associated

value. The operations a heap H implements include the following:

deletemin(H) return the object with the smallest value

insert(x,y,H) insert a new object x/value y pair in the structure

change(x,y,H) if y is smaller than x’s current value,

change the value of object x to y

Each entry in the heap will stand for a projected future “interesting event” of our extended BFS. Each entry will

correspond to a vertex, and its value will be the current projected time at which we will reach the vertex. Another

way to think of this is to imagine that, each time we reach a new vertex, we can send an explorer down each adjacent

edge, and this explorer moves at a rate of 1 unit distance per second. With our heap, we will keep track of when each

vertex is due to be reached for the first time by some explorer. Note that the projected time until we reach a vertex

can decrease, because the new explorers that arise when we reach a newly explored vertex could reach a vertex first

(see node b in Figure 8.2). But one thing is certain: the most imminent future scheduled arrival of an explorer must

happen, because there is no other explorer who can reach any vertex faster. The heap conveniently delivers this most

imminent event to us.

As in all shortest path algorithms we shall see, we maintain two arrays indexed by V . The first array, dist[v],

will eventually contain the true distance of v from s. The other array, prev[v], will contain the last node before v in

the shortest path from s to v. Our algorithm maintains a useful invariant property: at all times dist[v] will contain a

conservative over-estimate of the true shortest distance of v from s. Of course dist[s] is initialized to its true value 0,

and all other dist’s are initialized to ∞, which is a remarkably conservative overestimate. The algorithm is known as

Djikstra’s algorithm, named after the inventor.

Algorithm Djikstra (G = (V,E, length); s ∈V )

dist: array[V ] of integers, intialized each to ∞

prev: array[V ] of vertices, initialized each to nil

H := empty minheap

for v ∈V do

H.insert(v,∞) // insert v with key ∞

H.decreasekey(s,0)
rof
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Figure 8.2: Shortest paths

while H 6= /0

(v,v.key) := H.deletemin()
dist[v] := v.key

for (v,w) ∈ E

if dist[w]> dist[v]+ length(v,w)
H.decreasekey(w,dist[v]+ length(v,w))

fi

rof

end while

return (dist, prev)

The algorithm, run on the graph in Figure 8.2, will yield the following heap contents (node: dist/priority pairs)

at the beginning of the while loop: {s : 0}, {a : 2,b : 6}, {b : 5,c : 3}, {b : 4,e : 7, f : 5}, {e : 7, f : 5,d : 6}, {e : 6,d : 6},

{e : 6}, {}. The distances from s are shown in Figure 2, together with the shortest path tree from s, the rooted tree

defined by the pointers prev.

What is the running time of this algorithm? The algorithm involves m decreasekey operations, and n deletemin

and insertion operations, so the running time depends on the implementation of the heap H . There are many ways

to implement a heap. Using a binary heap would give runtime O(m logn). A Fibonacci heap would give runtime

O(m+n logn).

Current state of the art (SSSP with nonnegative edge lengths): The following results are all in the word RAM

model, with nonnegative integer edge lengths. Thorup gave an algorithm for directed graphs running in time O(m+

n log logn) [Thorup04], which is currently the best known. He earlier showed that in undirected graphs there is an

algorithm with running time time O(m+n) [Thorup99], which is of course optimal. In [Thorup07], Thorup showed
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that an integer sorting algorithm in word RAM running in time O(nT ) implies a minheap datastructure with running

time O(T ) per operation. Combining this with the O(n
√

log logn) expected time randomized sorting algorithm from

[HanT02] gives a Dijkstra implementation for directed graphs running in expected time O(m
√

log logn). Thorup

stated it as an explicit open problem in the conclusion of [Thorup07] to give a reduction from minheaps to sorting

such that insertion and deletemin each take O(T ) time, but decreasekey only takes O(1) time. If such a reduction

existed, then the expected running time using [HanT02] would improve to O(m+n
√

log log n).

Single-Source Shortest Paths: General Lengths

Our argument of correctness of our shortest path algorithm was based on the “time metaphor:” the most im-

minent prospective event (arrival of an explorer) must take place, exactly because it is the most imminent. This

however would not work if we had negative edges. (Imagine explorers being able to arrive before they left!) If the

length of edge (a,b) in Figure 2 were −1, the shortest path from s to b would have value 1, not 4, and our simple

algorithm fails. Obviously, with negative lengths we need a different algorithm.

We will now develop the Bellman-Ford algorithm which solves this problem. It is a dynamic programming

algorithm — we first explain its recursive variant (i.e. the memoization approach).

Suppose again that s is our source vertex that we are finding shortest paths from. Define a function f (u,k)

which is the length of the shortest path from s to u using at most k edges. First, let us suppose that we were promised

that G has no negative weight cycles. In this case, the length of the shortest path from s to any u would be f (u,n−1),

since taking k > n−1 would imply a cycle, which cannot provide any benefit if there are no negative weight cycles.

So, how can we calculate f (u,n−1)? Recursively!

f (u,k) =











0, if u = s,k = 0

∞, if u 6= s,k = 0

min
{

f (u,k−1),minv∈V :(v,u)∈E f (v,k−1)+ length(v,u)
}

, otherwise

In words, the base case is k = 0 (a path with zero edges), in which the length of the shortest path is either 0

or ∞ depending on whether u = s (we also use ∞ as the shortest path distance to represent the lack of a path). If

k > 0, then the shortest path from s to u of length at most k is, by the law of the excluded middle, either of length

less than k or exactly k. Thus we simply take the minimum of the two possibilities. The f (u,k−1) term represents

the first possibility. The other term in the minimum, which takes a min over v ∈V , represents the other possibility:

a path of length k is simply a path of length k−1, ending at some node v, followed by the edge v,u. Shortest paths

have the property that all subpaths are themselves shortest paths (justify this to yourself as an exercise!), and thus
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the path of length k− 1 to v should itself be a shortest path. Note that above we actually take f (v,k− 1)+w(v,u),

and f (v,k−1) isn’t actually a path of length exactly k−1, but rather simply at most k−1. This is OK though, since

this only makes the minimum smaller and f (v,k−1)+w(v,u) is still a valid upper bound on f (u,k).

As an exercise, you may want to show that the straightforward recursive implementation of computation of

f (u,n− 1) would take exponential time. But then we of course memoize. Now let us analyze running time and

space. First, in pre-processing, we form the reverse graph Grev by reversing all edges in E then store it in adjacency

list representation; this will help us loop over minv∈V :(v,u)∈E easily (it is just the neighborhood of u in Grev. Now,

fix some 0 ≤ k ≤ n−1 and let us compute the total work to compute all f (·,k) values. For a fixed u, the total work

through the loop to compute f (u,k) is O(1+ degGrev
(u)), where degH is the out degree in graph H . Thus the total

work done across all u is at most ∑u∈V C(1+degGrev
(u)) =C(n+m) = O(m+n). Thus the total work done across

all k is O((m+n)n). If the graph is connected then m gen−1, thus simplifying the running time to O(mn).

What about the space complexity? Storing a dynamic programming (DP) table dp[u][k] would take O(n2)

space across all u,k. Observe though that f (·,k) values only depend on f (·,k− 1) values, so a bottom-up dynamic

programming approach would only need a DP table of size n. When including the O(m+n) space to store the graph,

the bottom-up DP approach thus uses space O(m+n). It is also possible to implement the bottom-up DP approach

simply to use time O(mn) instead of O((m+n)n), even in cases when m ≪ n.

Negative Cycles

In fact, there is a further problem that negative edges can cause. Suppose the length of edge (b,a) in Figure 2

were changed to −5. The the graph would have a negative cycle (from a to b and back). On such graphs, it does not

make sense to even ask the shortest path question. What is the shortest path from s to c in the modified graph? The

one that goes directly from s to a to c (cost: 3), or the one that goes from s to a to b to a to c (cost: 1), or the one that

takes the cycle twice (cost: -1)? And so on.

The shortest path problem is ill-posed in graphs with negative cycles. It makes no sense and deserves no

answer. Our algorithm in the previous section works only in the absence of negative cycles. (Where did we assume

no negative cycles in our correctness argument? Answer: When we asserted that a shortest path from s to a exists!)

But it would be useful if our algorithm were able to detect whether there is a negative cycle in the graph, and thus to

report reliably on the meaningfulness of the shortest path answers it provides.

This is easily done. To check whether there are negative weight cycles, we check to make sure that for all

u ∈ V , f (u,n) ≥ f (u,n− 1). If there are no negative weight cycles this test will clearly hold, since a length n path
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must contain a cycle, and having no negative weight cycles means that this cannot be advantageous. For the other

direction, suppose f (u,n)≥ f (u,n−1) for all u. This is the same as saying f (u,n−1)≤ f (v,n−1)+w(v,u) for all

u,v ∈V . Consider a cycle v1,v2, . . . ,vℓ in the graph. We just need to show this cycle has nonnegative total weight.

For each i we have

f (vi+1,n−1)≤ f (vi,n−1)+w(vi,vi+1)

where we treat “ℓ+ 1” as 1 (wrapping around the cycle). Summing over all i from 1 to ℓ, we obtain the inequality

∑
ℓ
i=1 w(vi,vi+1)≥ 0, as desired.

Shortest Paths on DAG’s

There are two subclasses of weighted graphs that automatically exclude the possibility of negative cycles:

graphs with non-negative weights and DAG’s. We have already seen that there is a fast algorithm when the weights

are non-negative. Here we will give a linear algorithm for single-source shortest paths in DAG’s.

Again this problem can be solved with memoization/dynamic programming. Fixing a source vertex s, define

f (u) to be the length of the shortest path from s to u. Then we have the recurrence

f (u,k) =

{

0, if s = u

min{∞,minv∈V :(v,u)∈E f (v)}, otherwise

The running time and space with memoization are both O(m+n).

All pairs shortest paths via dynamic programming

Suppose now we want to calculate the shortest paths between every pair of nodes. One way to do this is

to run Dijkstra’s algorithm several times, once for each node (if edge weights are nonnegative). This would take

O(mn+ n2 logn) time using Fibonacci heaps. For graphs with negative edge weights, we could run Bellman-Ford

from each source, taking time O(mn2). An algorithm called Johnson’s algorithm can actually solve this problem in

O(mn+ n2 logn) by running Bellman-Ford once followed by n Dijkstra calls, though we will not cover it in class.

Here we develop a different solution, called the Floyd-Warshall algorithm. The running time will be O(n3).

Let us first assume that there are no negative weight cycles. Like with Bellman-Ford above, we can come up

with a recursive solution. Let f (u,v,k) be the length of the shortest path from u to v using only nodes 1 . . .k as

intermediate nodes. Of course when k equals the number of nodes in the graph, n, we will have solved the original

problem. Again we can compute f recursively:
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f (u,v,k) =

{

w(u,v), if k = 0

min{ f (u,v,k−1), f (u,k,k−1)+ f (k,v,k−1)}, otherwise

Again outside the base case we use the law of the excluded middle: either the shortest path when allowed to use

intermediate nodes 1, . . . ,k uses node k or it doesn’t. We simply take the minimum of the two possibilities. There

are n3 states and we do O(1) work for each one (a minimum of two numbers) ignoring recursive calls. Thus with

memoization the total running time would be O(n3). The space naively would unfortunately also be Θ(n3), but a

bottom-up DP implementation would only use O(n2) space since f (·, ·,k) values only depend on f (·, ·,k−1) values.

A short implementation of bottom-up Floyd-Warshall follows. We assume that di j is set to ∞ for all i, j such

that (i, j) /∈ E .

D = (di j), distance array, with weights from all i to all j

for k = 1 to n do

for i = 1 to n do

for j = 1 to n do

D[i, j] = min(D[i, j],D[i.k]+D[k, j])

Note that again we can keep an auxiliary array to recall the actual paths. We simply keep track of the last

intermediate node found on the path from i to j. We reconstruct the path by successively reconstructing intermediate

nodes, until we reach the ends.

What about if there are negative weight cycles?

Exercise. Show that there is a negative weight cycle in G if and only if for some 1 ≤ i ≤ n, D[i, i]< 0 at the end

of running Floyd Warshall.

Some Pointers on Point-to-Point Algorithms

Naturally, one can use Dijkstra’s algorithm to solve the point-to-point shortest paths problem. Indeed, for non-

negative distances, one can stop as soon as the other point is taken off the priority queue. But for real speed, one can

optimize in various ways, or use alternative methods. Here are just a few ideas that have been used in algorithms for

this problem.

• Bidirectional Dijkstra’s algorithm: start searches from s and t and alternate between them, and terminate when
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the searches meet in the middle. The stopping criterion is not trivial. The idea is that if the graph branches a

lot, two “small” searches might require less exploration than one large one.

• Changing ditances with potential functions: one can associated a potential π(x) with each vertex x and change

each distance d(u,v) to d(u,v) + π(v)− π(u). If π(s) = 0 for the source vertex and the new distances are

nonnegative, then the shortest paths remain the same (check why) and Dijkstra’s algorithm can still be used.

Clever choices of potential functions can speed up the algorithm.

• Using landmarks and precomputation: by precomputing the distance between a small collection of landmark

locations and nearby points, and precomputing all-pairs shortest paths between landmarks, one can quickly

determine an upper bound on the shortest path between two points: add up the distance from the start point

to its nearest landmark, the distance from the end point to its nearest landmark, and the distance between

landmarks. Using this information, one can prune Djikstra’s algorithm wehn finding point-to-point shortest

paths.

• Hierarchical methods: In real world networks, there are often natural partitions of the underlying space. For

example, for a long trip, it may be clear that first you have to get on a highway, then take the highway, then

get off the highway. To cross a body of water, you may have to go through one of a small number of bridges.

Taking advantage of such hierarchical features can speed up calculations.

Sections 1-3 of the survey at http://research.microsoft.com/pubs/207102/MSR-TR-2014-4.

pdf has a lot of good background on this problem. (The rest of the survey examines the problem of traveling via

public transport, where timetables are involved.)
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