
CS125 Lecture 9

An introductory example

Suppose that a company that produces three products wishes to decide the level of production of each so as to

maximize profits. Let x1 be the amount of Product 1 produced in a month, x2 that of Product 2, and x3 that of Product

3. Each unit of Product 1 yields a profit of 100, each unit of Product 2 a profit of 600, and each unit of Product 3 a

profit of 1400. There are limitations on x1, x2, and x3 (besides the obvious one, that x1,x2,x3 ≥ 0). First, x1 cannot

be more than 200, and x2 cannot be more than 300, presumably because of supply limitations. Also, the sum of the

three must be, because of labor constraints, at most 400. Finally, it turns out that Products 2 and 3 use the same

piece of equipment, with Product 3 using three times as much, and hence we have another constraint x2+3x3 ≤ 600.

What are the best levels of production?

We represent the situation by a linear program, as follows:

max100x1 +600x2 +1400x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 +3x3 ≤ 600

x1,x2,x3 ≥ 0

The set of all feasible solutions of this linear program (that is, all vectors in 3-d space that satisfy all constraints)

is precisely the polyhedron shown in Figure 9.1.

We wish to maximize the linear function 100x1 +600x2 +1400x3 over all points of this polyhedron. Geometri-

cally, the linear equation 100x1 + 600x2 + 1400x3 = c can be represented by a plane parallel to the one determined

by the equation 100x1 +600x2 +1400x3 = 0. This means that we want to find the plane of this type that touches the

polyhedron and is as far towards the positive orthant as possible. Obviously, the optimum solution will be a vertex

(or the optimum solution will not be unique, but a vertex will do). Of course, two other possibilities with linear

programming are that (a) the optimum solution may be infinity, or (b) that there may be no feasible solution at all.

9-1



Lecture 9 9-2

x1

x2

x3

200

300

200

opt

Figure 9.1: The feasible region

For this problem, an optimal solution exists, and moreover we shall show that it is easy to find.

Linear programs

Linear programs, in general, have the following form: there is an objective function that one seeks to optimize,

along with constraints on the variables. The objective function and the constraints are all linear in the variables; that

is, all equations have no powers of the variables, nor are the variables multiplied together. As we shall see, many

problems can be represented by linear programs, and for many problems it is an extremely convenient representation.

So once we explain how to solve linear programs, the question then becomes how to reduce other problems to linear

programming (LP).

There are polynomial time algorithms for solving linear programs. In practice, however, such problems are

solved by the simplex method devised by George Dantzig in 1947. The simplex method starts from a vertex (in this



Lecture 9 9-3

case the vertex (0,0,0)) and repeatedly looks for a vertex that is adjacent, and has better objective value. That is, it

is a kind of hill-climbing in the vertices of the polytope. When a vertex is found that has no better neighbor, simplex

stops and declares this vertex to be the optimum. For example, in the figure one of the possible paths followed by

simplex is shown. No known variant of the simplex algorithm has been proven to take polynomial time, and most of

the variations used in practice have been shown to take exponential time on some examples. Fortunately, in practice,

bad cases rarely arise, and the simplex algorithm runs extremely quickly. There are now implementations of simplex

that solve routinely linear programs with many thousands of variables and constraints.

Of course, given a linear program, it is possible either that (a) the optimum solution may be infinity, or (b) that

there may be no feasible solution at all. If this is the case, the simplex algorithm will discover it.

Reductions between versions of simplex

A general linear programming problem may involve constraints that are equalities or inequalities in either

direction. Its variables may be nonnegative, or could be unrestricted in sign. And we may be either minimizing

or maximizing a linear function. It turns out that we can easily translate any such version to any other. One

such translation that is particularly useful is from the general form to the one required by simplex: minimization,

nonnegative variables, and equality constraints.

To turn an inequality ∑aixi ≤ b into an equality constraint, we introduce a new variable s (the slack variable for

this inequality), and rewrite this inequality as ∑aixi + s = b,s ≥ 0. Similarly, any inequality ∑aixi ≥ b is rewritten

as ∑aixi − s = b,s ≥ 0; s is now called a surplus variable.

We handle an unrestricted variable x as follows: we introduce two nonnegative variables, x+ and x−, and

replace x by x+− x− everywhere. The idea is that we let x = x+− x−, where we may restrict both x+ and x− to be

nonnegative. This way, x can take on any value, but there are only nonnegative variables.

Finally, to turn a maximization problem into a minimization one, we just multiply the objective function by −1.

Approximate Separation

An interesting application: suppose that we have two sets of points in the plane, the black points (xi,yi) : i =

1, . . . ,m and the white points (xi,yi) : i = m+1, . . . ,m+n. We wish to separate them by a straight line ax+by = c,

so that for all black points ax+ by ≤ c, and for all white points ax+ by ≥ c. In general, this would be impossible.

Still, we may want to separate them by a line that minimizes the sum of the “displacement errors” (distance from the

boundary) over all misclassified points. Here is the LP that achieves this:



Lecture 9 9-4

mine1 +e2 + . . .+ em + em+1 + . . .+ em+n

e1 ≥ ax1 +by1 − c

e2 ≥ ax2 +by2 − c
...

em ≥ axm +bym − c

em+1 ≥ c−axm+1 −bym+1
...

em+n ≥ c−axm+n −bym+n

ei ≥ 0

Games

We can represent various situations of conflict in life in terms of zero-sum matrix games. For example, the game

shown below is the rock-paper-scissors game. The Row player chooses a row strategy, the Column player chooses

a column strategy, and then Column pays to Row the value at the intersection (if it is negative, Row ends up paying

Column). That is why the games are called zero-sum; the “total payoff” for the two players is zero, or equivalently

one player pays the other some amount.











r p s

r 0 −1 1

p 1 0 −1

s −1 1 0











Zero-sum games do not necessarily have to be symmetric (that is, Row and Column have the same strategies, or,

in terms of matrices, A = −AT ). For example, in the following fictitious Clinton-Dole game the strategies may be

the issues on which a candidate for office may focus (the initials stand for “economy,” “society,” “morality,” and

“tax-cut”) and the entries are the number of voters lost by Column.





m t

e 3 −1

s −2 1





We want to explore how the two players may play “optimally” in zero-sum games. It is not clear what this

means. For example, in the first game there is no such thing as an optimal “pure” strategy (it very much depends on

what your opponent does; similarly in the second game). But suppose that you play this game repeatedly. Then it

makes sense to randomize. That is, consider a game given by an m×n matrix Gi j; define a mixed strategy for the row

player to be a vector (x1, . . . ,xm), such that xi ≥ 0, and ∑m
i=1 xi = 1. Intuitively, xi is the probability with which Row

plays strategy i. Similarly, a mixed strategy for Column is a vector (y1, . . . ,yn), such that y j ≥ 0, and ∑n
j=1 y j = 1.



Lecture 9 9-5

Suppose that, in the Clinton-Dole game, Row decides to play the mixed strategy (.5, .5). What should Column

do? The answer is easy: If the xi’s are given, there is a pure strategy (that is, a mixed strategy with all y j’s zero except

for one) that is optimal. It is found by comparing the n numbers ∑m
i=1 Gi jxi, for j = 1, . . . ,n (in the Clinton-Dole

game, Column would compare .5 with 0, and of course choose the smallest —remember, the entries denote what

Column pays). That is, if Column knew Row’s mixed strategy, s/he would end up paying the smallest among the

n outcomes ∑m
i=1 Gi jxi, for j = 1, . . . ,n. On the other hand, Row will seek the mixed strategy that maximizes this

minimum; that is,

max
x

min
j

m

∑
i=1

Gi jxi.

This maximum would be the best possible guarantee about an expected outcome that Row can have by choosing a

mixed strategy. Let us call this guarantee z; what Row is trying to do is solve the following LP:

maxz

z −3x1 +2x2 ≤ 0

z +x1 −x2 ≤ 0

x1 +x2 = 1

Symmetrically, it is easy to see that Column would solve the following LP:

minw

w −3y1 +y2 ≥ 0

w +2y1 −y2 ≥ 0

y1 +y2 = 1

For these two-player games with only two options per player, it is pretty simple to solve the linear programs.

We do not need to use the simplex algorithm, or an LP solver; we can compute the optimal strategy for each player

by hand.

Let us go back to our game and summarize: By solving an LP, Row can guarantee an expected income of at

least V , and it turns out that Column can guarantee an expected loss of at most the same value. It follows that this

is the uniquely defined optimal play (it was not a priori certain that such a play exists). V is called the value of the

game. In this case, the optimum mixed strategy for Row is (3/7,4/7), and for Column (2/7,5/7), with a value of

1/7 for the Row player.

The existence of mixed strategies that are optimal for both players and achieve the same value is a fundamental

result in Game Theory called the min-max theorem. It can be written in equations as follows:

max
x

min
y

∑xiy jGi j = min
y

max
x

∑xiy jGi j.

It is surprising, because the left-hand side, in which Column optimizes last, and therefore has presumably an advan-

tage, should be intuitively smaller than the right-hand side, in which Column decides first.



Lecture 9 9-6

There is a fundamental reason that the two LPs have the same value; it has to do with what is called duality.

The crucial observation now is that these LP’s are dual to each other, and hence have the same optimum, call it V .

That is, we have to introduce the notion of duality of LPs.

Duality

Basically, duality means that for each LP maximization problem there is a corresponding minimization problem

with the property that any feasible solution of the min problem is greater than or equal any feasible solution of the

max problem. Furthermore, and more importantly, when these LPs have finite solutions, they have the same optimum.

A generic form of a primal and dual linear program, when all the constraints are inequalities and the variable

are constrained to be positive, is the following: The primal has the form:

maxc1x1 + . . .+ cnxn

ai1x1 +ai2x2 + . . .ainxn ≤ bi for i = 1, . . . ,m

x j ≥ 0 for i = 1, . . . ,n

The dual has the form:

minb1y1 + . . .+bmym

a1 jy1 +a12y2 + . . .am jym ≥ c j for j = 1, . . . ,n

yi ≥ 0 for i = 1, . . . ,m

To see where the idea of duality comes from, let’s start with the primal problem. Let us consider the constraint

equations

ai1x1 +ai2x2 + . . .ainxn ≤ bi for i = 1, . . . ,m

and try to take a linear combination of them so that a few things hold. The linear combination should sum up so

the coefficients are the ci, or (since the xi are non-negative) they can even be greater than the ci. Then the linear

combination witll give us a bound on the primal function we are trying to optimize. That is, we have

ai1x1 +ai2x2 + . . .ainxn ≤ bi.



Lecture 9 9-7

Let us choose multipliers y1,y2, . . . ,ym. These multiplier will need to be positive (so the sign of our inequality doesn’t

change). Multiplying the ith multiplier by the ith equations gives

ai1yix1 +ai2yix2 + . . .ainyixn ≤ biyi.

Now let’s sum up the m equations above; we get

∑
i

∑
j

ai jyix j = ∑
j
∑

i

ai jyix j ≤ ∑
i

biyi.

Now suppose we choose the yi carefully so that

∑
i

ai jyi ≥ c j.

Notice that these are the constraints of the dual problem. Then (since the x j are all non-negative)

∑
i

biyi ≥ ∑
j

c jx j.

That is, the solution to the primal problem (with the given constraints), the minimum possible value for ∑i biyi

necessarily gives an upper bound on the solution to the dual problem.

In fact, we can make a stronger statement. The duality theorem is the following:

Theorem 9.1 if a linear program has a bounded optimum, then so does its dual, and the two optimum values are

the same.

Not only do we get an upper bound, but we get a matching bound (as we saw in the 2-player game example).

Here’a an example. Consider our original problem:

max100x1 +600x2 +1400x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 +3x3 ≤ 600

x1,x2,x3 ≥ 0

If we take 200 times the third equation and 400 times the fourth equation we get:

200(x1 + x2 + x3)+400(x2 +3x3)≤ 200 ·400+400 ·600,



Lecture 9 9-8

or

200x1 +600x2 +1400x3 ≤ 320000.

Hence 320000 is an upper bound, and we saw that it is in fact achievable (by x2 = 300,x1 = 100); these were the

“right” coefficients in terms of the dual problem.

It is mechanical, given an LP, to form its dual. Suppose we start with a maximization problem. Change all

inequality constraints into ≤ constraints, negating both sides of an equation if necessary. Then

• transpose the coefficient matrix

• invert maximization to minimization

• interchange the roles of the right-hand side and the objective function

• introduce a nonnegative variable for each inequality, and an unrestricted one for each equality

• for each nonnegative variable introduce a ≥ constraint, and for each unrestricted variable introduce an equality

constraint.

If we start with a minimization problem, we instead begin by turning all inequality constraints into ≥ con-

straints, we make the dual a maximization, and we change the last step so that each nonnegative variable corresponds

to a ≤ constraint. Note that it is easy to show from this description that the dual of the dual is the original primal

problem!

Network Flows

Suppose that we are given the network in top of Figure 9.2, where the numbers indicate capacities, that is, the

amount of flow that can go through the edge. We wish to find the maximum amount of flow that can go through this

network, from S to T .

This problem can also be reduced to linear programming. We have a nonnegative variable for each edge, rep-

resenting the flow through this edge. These variables are denoted fSA, fSB, . . . We have two kinds of constraints:

capacity constraints such as fSA ≤ 5 (a total of 9 such constraints, one for each edge), and flow conservation con-

straints (one for each node except S and T ), such as fAD + fBD = fDC + fDT (a total of 4 such constraints). We

wish to maximize fSA + fSB, the amount of flow that leaves S, subject to these constraints. It is easy to see that this

linear program is equivalent to the max-flow problem. The simplex method would correctly solve it. We discuss this

further next time...



Lecture 9 9-9

Convex Programming/Optimization

We have focused on linear programming/optimization, but more generally there are techniques for what is

called convex optimization. In convex optimization, we seek to minimize some convex function f (x) (here x should

be thought of as a multi-dimensional variable over the reals) over a closed convex domain, given constraints of the

form gi(x) ≤ 0 for convex functions gi. Convex optimization generalizes linear programming, and can be used for

more complex optimization problems or generalizations of linear programming optimization problems. For more on

convex optimization, you might start with http://en.wikipedia.org/wiki/Convex_optimization.



Lecture 9 9-10

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

2

2

2

4
2

2

2

2

4
2

2

2

4

2

2

minimum cut,
capacity 6

Figure 9.2: Max flow


