
CS 125 Algorithms & Complexity — Fall 2016

Problem Set 1
Due: 11:59pm, Friday, September 9th

See homework submission instructions at http://seas.harvard.edu/~cs125/fall16/schedule.htm

Problem 5 is worth one-third of this problem set, and problems 1-4 constitute
the remaining two-thirds.

Problem 1

Indicate for each pair of expressions (A,B) in the table below the relationship between A
and B. Your answer should be in the form of a table with a “yes” or “no” written in each
box. For example, if A is O(B), then you should put a “yes” in the first box. If the base of
a logarithm is not specified, you should assume it is base-2.

A B O o Ω ω Θ
log2 n log3 n

log log n
√

log n

2log7 n n7

n22n 3n

n! nn

log(n!) log(nn)
(n2)! nn

(n!)2 nn

Problem 2

In many applications of sorting, the input is not just a list of numbers to be sorted, but
rather a list of items, each of which has a sort key ki (which is a number) and a data payload
di (which comes from an arbitrary set). The task is to sort the items according to the
sort key. (This is like sorting a spreadsheet by a particular column.) Formally, given an
input (k1, d1), . . . , (kn, dn) where each ki ∈ N, a sorting algorithm should produce a sequence
(k′1, d

′
1), . . . , (k

′
n, d

′
n) such that (1) k′1 ≤ k′2 ≤ · · · ≤ k′n, and (2) there is a permutation π of

{1, . . . , n} such that for all i, (k′i, d
′
i) = (kπ(i), dπ(i)).

(a) (3 points) Show how to extend counting sort to solve the above task, sorting in time
O(n+M) assuming all of the sort keys are in the range [0,M). Your algorithm should
work even if there are repetitions among the sort keys. You can assume that copying
of data items di can be done in unit time.

(b) (3 points) Show how to ensure that your algorithm is stable, in the sense that it does
not reorder items with the same sort key. Formally, if ki = kj for some i < j, then
π(i) < π(j).

(c) (4 points) Another sorting algorithm that can work in o(n log n) time is Radix Sort.
Radix sort works as follows, on numbers represented in binary.

i. Start with the last b bits of the numbers. Use your version of counting sort from
part (b) to the sort the numbers using the last b bits as the sort key.

ii. Continue from right to left looking at the next b bits of the numbers, and sort
based on those bits along using counting sort.

iii. Continue this repeated sorting including through the first b bits.

Argue that if you use b = log2 n and you are sorting n numbers in the range [0, nj) for
some constant j that the total time taken by radix sort is O(n). (Here we assume, as
we did in class, that our machine can manipulate numbers of log2 n bits with unit cost
operations – so that, for example, it can cope with an array of n numbers.) As part of
your proof, explain why you need the intermediate sorting steps to be stable.

Problem 3

In class we showed how to speed up integer multiplication via a divide-and-conquer approach:
equipartitioning the digits of each of x and y into two sets, then doing three recursive
multiplications followed by some insertions and subtractions (Karatsuba’s algorithm). The
overall runtime was O(nlog2 3). In this problem we will develop a similar, but faster, approach.

In order to speed up integer multiplication, we will first take a slight detour. Let us first
consider the problem of solving a system of n linear equations with n variables x0, . . . , xn−1.
Thus the input is n2 + n numbers {ai,j} for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n. These represent
the n equations ai,0x0 + · · ·+ ai,n−1xn−1 + ai,n = 0 for 0 ≤ i ≤ n− 1. Consider the following
pseudocode for a function solve(), which solves for the n variables assuming that there is a
unique solution. The input is a doubly-indexed array A with A[i][j] representing ai,j above.
Below, we sometimes abuse notation and think of A[i] as the vector (ai,0, ai,1, . . . , ai,n).

2

Algorithm solve(A[0..n-1][0..n]): // coefficients for n equations, n variables

// base case, n = 1, corresponds to a0,0x0 + a0,1 = 0

1. if n = 1: return (-A[0][1]/A[0][0])

// make sure x0 has coefficient 1 in the 0th equation

2. let i be the first index with A[i][0] 6= 0; swap A[i] with A[0]
3. A[0] ← A[0]/A[0][0]

// zero out the coefficient of x0 in every equation but the 0th one

4. for i = 1, . . . , n: A[i] ← A[i]−A[0]·A[i][0]
// recursively solve n− 1 equations in n− 1 variables x1, . . . , xn−1

5. (x1, . . . , xn−1)← solve(A[1..n-1][1..n])

6. x0 ← −A[0][n] −
∑n−1

j=1 xj ·A[0][j]
7. return (x0, . . . , xn−1)

(a) (2 points) Let T (n) denote the worst case running time of solve() on n equations over
n variables. Assume all basic arithmetic operations (addition, subtraction, division,
and multiplication) are constant time. Write a recurrence for T (n) and solve it.

(b) (2 points) Now let us not assume arithmetic operations are unit cost. To implement
solve(), we maintain all intermediate computations explicitly as fractions, storing nu-
merators and denominators. Suppose ai,j for 0 ≤ i, j < n are L-digit integers, and the
ai,n are each R digits. Prove that there exists a function f : N×N→ N such that if one
carried out all arithmetic operations in solve() exactly by storing fractions explicitly
as (numerator, denominator) pairs, then no intermediate numerators or denominators
of A[i][0..n-1] values or denominators of A[i][n] values would ever require more
than f(n, L) digits, and no intermediate numerators of A[i][n] values would ever re-
quire more than f(n, L) · R digits, for any A in any level of recursion. Here N is the
set of natural numbers. Showing the existence of any such f is sufficient for full credit
— you do not have to find an optimally slow-growing f . Conclude a bound on the
running time of solve() in terms of f, n, L,R.

(c) (4 points) In this problem part we will finally develop a method faster than Karatsuba’s
algorithm for integer multiplication. Suppose we want to multiply two n-digit positive
integers w, y. If n = 1, we simply output the answer. Otherwise, we pad w, y with
leading zeroes to make n a multiple of 3. Then we write w = pw(10n/3) and y =
py(10n/3), where pw(z) is the polynomial whi · z2 + wmid · z + wlo, and similarly for py.
Here each of whi, wmid, wlo have n/3 digits. For example, if w = 140712 then whi = 14,
wmid = 7, wlo = 12. Show how to use pw, py, and solve() to develop an algorithm for
integer multiplication faster than Karatsuba’s algorithm, and prove a bound on the
running time of your method. You may use the result of part (b) even if you didn’t
solve it. Not for credit: what if you tried to break w, y into k > 3 parts each?

You may take for granted the fact that for any d ≥ 1, for any distinct reals z0, . . . , zd,
and for any (not necessarily distinct) m0, . . . ,md, the set of d + 1 linear equations

3

mj +
∑d

i=0 xiz
i
j = 0 has a unique solution. In other words, there is a unique degree-d

polynomial interpolating given values −mj for any d+ 1 distinct evaluation points zj.

Problem 4

It is known that every integer n > 1 can be uniquely factored as a product of primes. For
example, 4 = 2 × 2, 6 = 2 × 3, and 90 = 2 × 3 × 3 × 5. Let p(n) be the number of distinct
prime divisors of n, so p(6) = 2 but p(4) = 1.

(a) (2 points) Show that p(n) = O(log n).

(b) (4 points) Show that p(n) = O(logn
log logn

).

(c) (4 points) It is a fact, which you may assume without proof, that there are Θ(t/ log t)
primes between 1 and t. Use this fact to show that it is not true that p(n) = o(logn

log logn
).

Problem 5 (Programming Problem)

Solve “ZOO” on the programming server https://cs125.seas.harvard.edu.
(under “Problem Set 1”).

4

