
CS 125 Algorithms & Complexity — Fall 2016

Problem Set 10
Due: 11:59pm, Friday, November 18th

See homework submission instructions at http://seas.harvard.edu/~cs125/fall16/schedule.htm

Problem 1

We saw in class that hashing with chaining, using universal hashing, leads to O(1) expected
time per operation for the dynamic dictionary problem. One downside of hashing with
chaining is that it is not cache-friendly: computers are really fast at accessing sequential
locations in memory, and slow at accessing a sequence of random locations (due to pre-
fetching, amongst other optimizations). The reason hashing with chaining is not cache-
friendly is that the nodes in the linked list we traverse during an operation may be at very
different memory locations.

A common remedy to the above issue in practice is to not use hashing with chaining, but
rather to use a scheme known as linear probing. In this scheme, we have an array A of length
m and a hash function h : [U ] → [m]. Recall that we are maintaining a set S ⊆ [U ] with
|S| = n subject to query, insertion, and deletion. In linear probing, we perform insertion
using the following algorithm:

Algorithm insert(k, v):

1. i← h(k)
2. while A[i] is not NULL:

if A[i].first = k:
A[i].second← v
return

else:
i← (i + 1)%m

3. A[i]← (k, v)

The idea is that we try to insert (k, v) at location h(k), unless A[h(k)] is already occupied
by some other item. In such a case, we scan right in the array until we find an empty location
and store (k, v) there instead. Deletion and query are performed similarly.

Prove that if m > 10n and h is a uniformly random function mapping [U ] to [m], then
the expected time per insertion is O(1). You may use the fact, without proof, that for any
integers 1 ≤ k ≤ n,

(
n
k

)
≤ (en/k)k.

Hint: For a key k being inserted, condition on how h acts on S\{k}. What is the expected
runtime of the insertion of k as a function of which cells are already occupied in the table?



Problem 2

In class we showed that when using hashing with chaining, the expected runtime of an
operation is O(1), but we could of course be unlucky and have some operations taking much
longer than constant time. In particular, the worst case operation time is the length L of
the longest linked list. Given that the set S of items we are maintaining is of size n, problem
4 of problem set 9 implies that with high probability, L is at most O(log n/ log log n) if h is
a uniformly random function from the set of all functions mapping S to [m] (see the pset9
solutions for details). As we saw in class, we prefer to use smaller hash families so that h
can be stored in memory using many fewer random bits.

Prove that if h is drawn at random from a universal hash family H with m = n, then
EL = O(

√
n). This is of course not nearly as good as O(log n/ log log n), but it is better

than the trivial upper bound of n. You may use the fact, without proof, that if Φ : R→ R
is a convex function and X is a real-valued random variable, then Φ(EX) ≤ EΦ(X) (this is
known as Jensen’s inequality). Hint: Φ(z) = z2 is convex.

Problem 3

In class we analyzed a toy model in which vertices 0, 1, . . . , n+ 1 are connected in a path, we
start at some vertex i, and in every time step we move to a uniformly chosen random neighbor
of our current location. We showed the expected number of steps to reach 0, starting at i, is
exactly n2− (n− i)2. We then showed via a coupling argument that the random walk 2SAT
algorithm finds a satisfying assignment of a satisfiable formula in at most O(n2) time steps.

Use coupling to show the 3SAT random walk algorithm also finds a satisfying assignment
of a satisfiable formula in a number of steps at most that of the corresponding toy model.

Problem 4

Hoeffding’s inequality states that when flipping t independent coins each with probability p
of heads, the probability of seeing at least (p + ε)t heads is at most e−2ε2t.

Consider now the definition of the complexity class BPPp: a language L is in BPPp if
there exists a polynomial-time verifier V and constant c > 0 such that

• ∀x ∈ L, Py(V (x, y) = 1) > 1− p

• ∀x /∈ L, Py(V (x, y) = 1) < p

where y is a uniformly random binary string of length at most cnc and V runs in time at
most cnc, where n is the length of x. We use BPP to denote the class BPP1/3.

(a) (7 points) Use Hoeffding’s inequality to show: ∀k > 0, BPP1/3 = BPP
1/2nk .

(b) (3 points) Suppose f : N → N is some function such that f(n) = nω(1). Show then
that BPP1/3 = BPP1/2f(n) implies P = BPP.
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