
CS 125 Algorithms & Complexity — Fall 2016

Problem Set 11
Due: 11:59pm, Wednesday, November 30th

See homework submission instructions at http://seas.harvard.edu/~cs125/fall16/schedule.htm

Problem 1

If we restrict the problems we look at, sometimes hard problems like counting the number
of independent sets are in a graph become solvable.

(a) (3 points) Consider a graph that is a path on n vertices. (That is, the vertices are
labelled 1 to n, and there is an edge from 1 to 2, 2 to 3, etc.) How many independent
sets are there as a function of n? We want to express your answer in terms of a family
of numbers – like “For n vertices the number of independent sets is the nth prime.”
(note: that is not the answer).

(b) (3 points) How many independent sets are there on a cycle of n vertices?

(c) (4 points) How many independent sets are there on a complete binary tree with 127
nodes? Describe how you arrived at this number.

Problem 2

Consider the problem MAX-k-CUT, which is like the MAX CUT algorithm, except that
we divide the vertices into k disjoint sets, and we want to maximize the number of edges
between sets. Explain how to generalize both the randomized and the local search algorithms
for MAX CUT to MAX-k-CUT and prove bounds on their performance.

Problem 3

We know that that all of NP-complete reduce to each other. It would be nice if this meant
that an approximation for one NP-hard problem would lead to another. But this is not
the case. Consider the case of Vertex Cover, for which we have a polynomial-time 2-
approximation algorithm.

Another NP-complete optimization problem is Independent Set: given a graph G =
(V,E), find as large a set S ⊂ V as possible such that no two vertices u, v ∈ S share an
edge. In particular, S ⊂ V is a vertex cover iff its complement V − S is an independent set.



(a) (4 points) Explain why applying the above equivalence to the 2-approximation for
Vertex Cover does not yield a constant-factor approximation algorithm for Inde-
pendent Set. That is, show that for every constant c ∈ (0, 1), there exists a family
of graphs (growing so that the number of vertices/edges grows to infinity) for which
even if we obtain a 2-approximation of the minimum vertex cover, the corresponding
independent set is not within a factor of c of the maximum independent set.

(b) (6 points) Using the PCP Theorem and a variant of the standard NP-completeness
reductions from 3-SAT, it can be shown that both Independent Set and Vertex
Cover are NP-hard to approximate to within factors 1 − ε1 and 1 + ε2, respectively,
for some constants ε1, ε2 > 0. Deduce from this that Independent Set is NP-hard to
approximate to within any constant factor α ∈ (0, 1) by, given a graph G, considering
the graph Gk with vertex set Vk = V k and edge set Ek = {((u1, . . . , uk), (v1, . . . , vk)) :
∃i (ui, vi) ∈ E}. How does the size of the maximum independent set in Gk relate to
that in G? Why doesn’t the same reduction apply to Vertex Cover?

Problem 4

Sometimes it is worth running an approximation algorithm to solve a problem not because
the problem is NP-hard, but because the fastest known polynomial time algorithm we have
to solve isn’t as fast as we would like!

Consider for example Problem 4 from Problem Set 3 of this class (optimal layout of the
nodes of a trie on blocks on disk, with block size B). You saw in that problem set that if there
is a probability distribution over queries to the leaves of an n-node trie, there is a dynamic
programming algorithm running in time O(nB2) which finds a layout that minimizes the
expected cost of a query. (In problem set 3 it was assumed that queries could to be any
node, but only querying leaves is a special case since that just corresponds to instances for
which internal nodes have probability 0 of being queried.)

Suppose the optimal layout achieves an expected query cost of OPT. Give an algorithm
with improved running time O(nB) which finds a layout guaranteed to achieve expected
query cost at most OPT+ 1. That is, on average we only have to touch one more disk block
than the optimal solution. Hint: reduce to the case that the input trie has at most n/B
leaves, suffering at most one unnecessary block transfer in your reduction.

2


