
CS 125 Algorithms & Complexity — Fall 2016

Problem Set 4
Due: 11:59pm, Friday, September 30th

See homework submission instructions at http://seas.harvard.edu/~cs125/fall16/schedule.htm

Problem 1

Although it is not known how to prove ω(n) lower bounds for any natural offline problems,
it is known how to prove lower bounds on the time required to perform any operation for
various data structural problems. Here we will focus on how to do so for a variant of the
word RAM model we saw in class. More specifically, in this problem we consider the model
variant in which w, the word size, has some fixed value in the beginning that never changes.

A common way to argue time lower bounds for solving data structural problems in the
word RAM model is to show a lower bound in a different model: the cell probe model. In
this model, there is the memory, which is an array of S cells M[0], . . . , M[S-1], each holding
a value in {0, . . . , 2w−1}. The memory stores all the data maintained by the data structure.
There is also an algorithm A. The algorithm can send memory two types of messages:

• read(i): the memory responds with a w-bit message containing the contents of M[i]

• store(x, i): the memory performs the change M[i]← x

Whenever there is a data structural operation, i.e. an update or query, the algorithm can
adaptively decide to send a sequence of the above types to the memory. “Adaptive” here
refers to the fact that the algorithm can wait to hear the return message from a read before
deciding what the next message it sends should be.

The worst-case running time T (n) of a data structural operation op in the cell probe
model is defined to be the maximum number of messages sent between A and M over all
possible states of the data structure before op, over all datasets of size at most n.

(a) (2 points) Suppose that for some data structural problem, any cell probe algorithm
requires worst-case running time T (n) to implement operation op. Show that this
implies the worst-case running time of any word RAM solution must be Ω(T (n)).

(b) (2 points) Consider the following PrefixXOR data structural problem on bits: we are
to maintain n bits x1, . . . , xn, all initialized to 0, subject to the following operations:

• query(i): return x1 ⊕ . . .⊕ xi
• update(i, z): set xi ← z (where z ∈ {0, 1})

Our goal will be to show that for any correct cell-probe algorithm solving PrefixXOR,
either query or update requires Ω(log n/ log log n) worst-case time when w = 1. This
will be accomplished via a reduction. Consider the following other data structural
problem which we call the Guess problem. In Guess, the data structure must maintain
a value z ∈ {1, . . . , n} under the following operations:

• set(v): sets z ← v

• less?(j): returns a Boolean indicating whether j < z

Suppose we are only interested in sequences of operations in which there is exactly one
set operation, in the beginning, followed by some number of less? operations. Show
that if there is a space-S cell-probe algorithm for PrefixXOR with update time tu and
query time tq, then there is a space-S cell-probe algorithm for Guess implementing set

in time tu and less? in time tq. Conclude it suffices to prove an Ω(log n/ log log n)
lower bound on the maximum runtimes for set and less? in a correct cell-probe
implementation of Guess.

(c) (3 points) Consider the following game: there is a collection D of binary vectors
D1, . . . , Dn ∈ {0, 1}b, each with support size at most r (i.e. at most r non-zero en-
tries). There are also two friends Alice and Bob. Alice and Bob both know the entire
collection D, and in addition, Bob also knows an index i ∈ {1, . . . , n}. Alice likes to
play a guessing game to figure out i: she can repeatedly ask some j ∈ {1, . . . , b} to
Bob, and Bob replies with the jth bit of Di. Suppose Alice has a strategy that is
always guaranteed to successfully identify i using at most t questions. Then prove that

n ≤
r∑

i=0

(
t

i

)

(d) (3 points) Use (c) to show that for any correct cell probe algorithm solving Guess

with w = 1, the worst-case runtime of either set or less? must be Ω(log n/ log log n),
irrespective of S. You are allowed to use, without proof, that for any 0 ≤ r ≤ t,∑r

i=0

(
t
i

)
≤ (100t/r)r.

Problem 2

Give a 3-tape TM that computes the multiplication function. The input alphabet should be
{0, 1,×} and given an input of the form x× y, where x, y ∈ {0, 1}∗ are interpreted as binary
representations of nonnegative integers, the TM should output a binary representation of the
product. You do not need to worry about improperly formatted inputs, and the output can
contain extra leading zeroes. Your TM heads can also stay still in a transition; they do not
need to move at every time step. Provide both an implementation-level description of your
TM (in prose) and an annotated state diagram. Your state diagram can use shorthands such

2

as “(0,Γ,t) 7→ (1,Γ,t, R,R, S),” which means δ(0, γ,t) = (1, γ,t, R,R, S) for all γ ∈ Γ.
The S denotes “stand still”.

Suggestion: think through a few different possible implementations before deciding which
one to formalize. A judicious choice can make for a much simpler state diagram!

Problem 3

The goal of this question is to prove that any single-tape Turing Machine deciding if a string
xy is an even-length palindrome must take time Ω(n2) where n = |x| = |y| (the EVENPAL
language from class). We do so by exploring “crossing sequences”. Given a Turing Machine
M and input xy, the crossing sequence at location i is a sequence of states (q1, q2, . . . , q`)
such that q1 is the state of Turing machine when it first crosses over from the ith tape cell
to the (i + 1)st cell, and q2 is the state at the next crossing (from (i + 1) to i) and so on.
You may assume that the input is of the form {0, 1}∗.

(a) (5 points) Prove that if M decides EVENPAL then the nth crossing sequences must be
distinct for every pair of distinct even length palindromes.

(b) (5 points) Expand on the idea above to prove that M must take time Ω(n2).

Problem 4

The term rewriting problem is defined below:
Input: Finite alphabet Σ, source string s ∈ Σ∗, target t ∈ Σ∗ and collection of rewrite

rules α1 → β1, . . . , αm → βm.

Question: Decide if the string s can be rewritten as the string t by applying a series of
rewrite steps, i.e., s = s0, s1, s2, . . . , sm = t where each rewrite step sj → sj+1 is obtained by
replacing some occurrence of some string αij in sj by βij .

Prove that term rewriting is a complete model of computing. Specifically given a Turing
Machine M and input x, compute an input (s, t, (αi → βi)i) for the term-rewriting problem
such that M halts and accepts x if and only if s can be rewritten as t.

3

