CS 125 Algorithms \& Complexity - Fall 2016
 Problem Set 6

Due: 11:59pm, Friday, October 21st
See homework submission instructions at http://seas.harvard.edu/~cs125/fall16/schedule.htm
Problem 5 is worth one-third of this problem set, and problems 1-4 constitute the remaining two-thirds.

Problem 1

For each of the following languages, determine whether or not they are regular and prove your answer.
(a) (2.5 points) $\left\{w \in\{a, b\}^{*}: w\right.$ has more a 's than b 's $\}$.
(b) (2.5 points) $\left\{w \in\{a, b\}^{*}\right.$: the number of occurrences of $a b$ in w equals the number of occurrences of $b a\}$.
(c) (2.5 points) $\left\{w \in\{a, b, \ldots, z\}^{*}:|w|\right.$ is a perfect square $\}$.
(d) (2.5 points) $\left\{w \in\{0,1\}^{*}: w\right.$ is the binary representation of a number divisible by 3$\}$.

Problem 2

Let $G=(V, E)$ be an unweighted, undirected graph with n vertices and m edges. Suppose that we do not want to find just one minimum cut, but want to count the number of minimum cuts (recall in class that we said the number of minimum cuts is never more than $\binom{n}{2}$, which is achieved by the n-cycle, but in general the number of minimum cuts could be any integer between 1 and $\binom{n}{2}$). In this problem we will give a randomized algorithm to accomplish this task.
(a) (3 points) Suppose we have n colored balls in a bucket, each with a different color. At each time step, we pick a uniformly random ball, observe its color, then put it back in the bucket. Show that the expected number of time steps before we observe each color at least once is $O(n \log n)$.
(b) (7 points) Give a randomized Monte Carlo algorithm to exactly count the number of minimum cuts. You may assume that one run of the contraction algorithm, to output a single cut (which we said in class is a mincut with probability at least $1 /\binom{n}{2}$), can be implemented to take time $O\left(n^{2}\right)$. A modified version of Karger's basic contraction algorithm to solve this problem part is sufficient to receive full credit - you need not attempt to modify Karger-Stein. Your algorithm should fail to output the correct answer with probability at most P, for some given $0<P<1$.

Problem 3

Let $L_{k}=\left\{w \in\{a, b\}^{*}\right.$: the k th symbol from the end of w is $\left.a\right\}$.
(a) (5 points) Show that L_{k} is recognized by a $(k+1)$-state NFA N_{3}. Draw the state diagram of N_{3} and apply the subset construction to N_{3} to obtain a DFA for L_{3}.
(b) (5 points) Show that every DFA to recognize L_{k} requires at least 2^{k} states. (Hint: use the Myhill-Nerode Theorem.)
(c) (Challenge problem, 0 points) The above shows that the subset construction is within a factor of 2 of optimal (since a language given by an NFA with $|Q|=k+1$ states requires at least $2^{k}=2^{|Q|} / 2$ states as a DFA). Close the gap between the upper bound and lower bound as much as you can.

Problem 4

In class, we saw how to decide whether a pattern $w \in \Sigma^{*}$ of length m is a substring of a string $x \in \Sigma^{*}$ of length n in time $O\left(m^{3} \cdot|\Sigma|+n\right)$ by constructing a DFA $M_{w}=(Q=$ $\left.\{0, \ldots, m\}, \Sigma, \delta_{w}, q_{0}=0, F=\{m\}\right)$ from w and then running M_{w} on x. Here you will see how to improve the algorithm to run in time $O(m+n)$. Given a pattern w, define an array $\pi_{w}=\left(\pi_{w}(1), \ldots, \pi_{w}(m)\right) \in\{0, \ldots, m\}^{m}$ where $\pi_{w}(i)$ is defined to be the largest $j<i$ such that $w_{1} w_{2} \cdots w_{j}=w_{i-j+1} w_{i-j+2} \cdots w_{i}$.
(a) (3 points) Show that given $w, \pi_{w}, q \in\{0, \ldots, m\}$, and $\sigma \in \Sigma$, the transition function $\delta_{w}(q, \sigma)$ can be evaluated in time at most $O\left(q+2-\delta_{w}(q, \sigma)\right)$.
(b) (3 points) Show that given w, π_{w}, and a string $x \in \Sigma^{*}$ of length n, we can decide whether w is a substring of x in time $O(n)$. Hint: use (a) and look for a telescoping sum to obtain an amortized analysis.
(c) (4 points) Show that given w, the array π_{w} can be constructed in time $O(m)$. Hint: use $\pi_{w}(1), \ldots, \pi_{w}(i-1)$ to help construct $\pi_{w}(i)$ and again use an amortized analysis.

Problem 5 (Programming Problem)

Solve "FIELD" on the programming server https://cs125.seas.harvard.edu. (under "Problem Set 6").

