
CS 125 Algorithms & Complexity — Fall 2016

Problem Set 6
Due: 11:59pm, Friday, October 21st

See homework submission instructions at http://seas.harvard.edu/~cs125/fall16/schedule.htm

Problem 5 is worth one-third of this problem set, and problems 1-4 constitute
the remaining two-thirds.

Problem 1

For each of the following languages, determine whether or not they are regular and prove
your answer.

(a) (2.5 points) {w ∈ {a, b}∗ : w has more a’s than b’s}.

(b) (2.5 points) {w ∈ {a, b}∗ : the number of occurrences of ab in w equals the number of

occurrences of ba}.

(c) (2.5 points) {w ∈ {a, b, . . . , z}∗ : |w| is a perfect square}.

(d) (2.5 points) {w ∈ {0, 1}∗ : w is the binary representation of a number divisible by 3}.

Problem 2

Let G = (V,E) be an unweighted, undirected graph with n vertices and m edges. Suppose
that we do not want to find just one minimum cut, but want to count the number of minimum
cuts (recall in class that we said the number of minimum cuts is never more than

(
n
2

)
, which

is achieved by the n-cycle, but in general the number of minimum cuts could be any integer
between 1 and

(
n
2

)
). In this problem we will give a randomized algorithm to accomplish this

task.

(a) (3 points) Suppose we have n colored balls in a bucket, each with a different color. At
each time step, we pick a uniformly random ball, observe its color, then put it back in
the bucket. Show that the expected number of time steps before we observe each color
at least once is O(n log n).

(b) (7 points) Give a randomized Monte Carlo algorithm to exactly count the number of
minimum cuts. You may assume that one run of the contraction algorithm, to output
a single cut (which we said in class is a mincut with probability at least 1/

(
n
2

)
), can

be implemented to take time O(n2). A modified version of Karger’s basic contraction
algorithm to solve this problem part is sufficient to receive full credit — you need
not attempt to modify Karger-Stein. Your algorithm should fail to output the correct
answer with probability at most P , for some given 0 < P < 1.

Problem 3

Let Lk = {w ∈ {a, b}∗ : the kth symbol from the end of w is a}.

(a) (5 points) Show that Lk is recognized by a (k + 1)-state NFA N3. Draw the state
diagram of N3 and apply the subset construction to N3 to obtain a DFA for L3.

(b) (5 points) Show that every DFA to recognize Lk requires at least 2k states. (Hint: use
the Myhill-Nerode Theorem.)

(c) (Challenge problem, 0 points) The above shows that the subset construction is
within a factor of 2 of optimal (since a language given by an NFA with |Q| = k + 1
states requires at least 2k = 2|Q|/2 states as a DFA). Close the gap between the upper
bound and lower bound as much as you can.

Problem 4

In class, we saw how to decide whether a pattern w ∈ Σ∗ of length m is a substring of
a string x ∈ Σ∗ of length n in time O(m3 · |Σ| + n) by constructing a DFA Mw = (Q =
{0, . . . ,m},Σ, δw, q0 = 0, F = {m}) from w and then running Mw on x. Here you will see
how to improve the algorithm to run in time O(m+ n). Given a pattern w, define an array
πw = (πw(1), . . . , πw(m)) ∈ {0, . . . ,m}m where πw(i) is defined to be the largest j < i such
that w1w2 · · ·wj = wi−j+1wi−j+2 · · ·wi.

(a) (3 points) Show that given w, πw, q ∈ {0, . . . ,m}, and σ ∈ Σ, the transition function
δw(q, σ) can be evaluated in time at most O(q + 2− δw(q, σ)).

(b) (3 points) Show that given w, πw, and a string x ∈ Σ∗ of length n, we can decide
whether w is a substring of x in time O(n). Hint: use (a) and look for a telescoping
sum to obtain an amortized analysis.

(c) (4 points) Show that given w, the array πw can be constructed in time O(m). Hint:
use πw(1), . . . , πw(i− 1) to help construct πw(i) and again use an amortized analysis.

Problem 5 (Programming Problem)

Solve “FIELD” on the programming server https://cs125.seas.harvard.edu.
(under “Problem Set 6”).

2

