CS 125 Explaining the Master Theorem September 6, 2016

1 Example

Exercise. Suppose T(1) = 3 and T(n) = 3T (n/2) + n. How would you find T(8)? The point of this
exercise is the process.

Solution.
Expand and substitute using the formula for the recurrence:

— 3[3T(2) + 4] + 8 = 9T(2) + 20
27T (1) 4 38 = 119

\
©
w
=
G
_I_
L)
_l_
Do
S
|

This is the same approach that’s used to prove the Master Theorem.

2 Master Theorem

Start with a recurrence T'(n) = aT(n/b) + en® (supposing that T'(pg) = qo for constants pp and qp) and
expand:

T(n) = aT(n/b) 4+ cn*

—a [aT(n/bQ) Ty (

Z)k] + en® = a*T(n/b?) + enF (1 + (;ik)

= a*T(n/b%) + cn* [(bi,)s + (1%)5_1 TR l;ik + 1]

We stop expanding when we reach the base case, when 7z = po. This occurs after s ~ log, (p%) = log, n+

constant iterations. Notice that the expression is split into two terms. The asymptotic form of T'(n) is just
a competition between these two terms to see which one dominates.

The second term has a geometric sum: using the formula for a geometric sum gives:

1_(};)s+1]

T(n) =a’qo + en” 1—- 4
bk

Exercise. Use the above expansion to derive the case of the Master Theorem for a < bF.



Solution.
Here, ;v <1, and as n (and therefore s) grows large the sum of the above geometric series is dominated
by the constant term ﬁ = 0(1). So T(n) = O(a*) + ©(n*). Using our expression for s:

b

a® = @(alogb n) _ @(nlogb a) _ o(nk)

since a < b¥ means that log, a < k. We therefore get that T'(n) = o (n¥) + ©(n*) = ©(nk).

Exercise. Now derive the Master Theorem for a > bF.

Solution.
Proceeding like the previous case, the geometric sum is now dominated by the:

(

)s+1

—7=°(G))

%=

%=

term. Then the second term of T'(n) is:

. O <(;€)logbn> k.o <n1;iba) o (nlogba)

This along with the result from the previous exercise that a® = © (n!°%®) gives that T'(n) = © (n'°%9).

Exercise. Derive the Master Theorem for a = b*.

Solution.
Every term in the geometric series is now 1. There are s + 1 terms, so the second term of T'(n) becomes:

enf(s+1)=0 (nk log,, n) =0 (nk log n)

The first term of T'(n) is © (n'°%®) = © (n*) so the second term dominates and T'(n) = © (n*logn).

Qualitatively, if a > b, the bottleneck of the recurrence is the number of recursive calls we have to make.
Otherwise, it’s the extra work done during each call (i.e. the cn® term) that dominates the runtime.



	Example
	Master Theorem

