
CS 125 Section #4 RAMs and TMs 9/27/16

1 RAM

A word-RAM consists of:

• A fixed set of instructions P1, . . . , Pq. Allowed instructions are:

– Modular arithmetic and integer division on registers; the standard model for a RAM machine
does not have negative numbers, but you can verify that allowing signed integers doesn’t chance
the power of the model.

– Bitwise operations on registers.

– Loading a constant into a register.

– Transfering values between a register and a word in main memory (as addressed by another
register).

– Conditional GOTO.

– MALLOC – increase the size S of main memory by 1. This also increments the word size if the
current word size is too small to address all of main memory.

– HALT.

• The program counter l ∈ {1, . . . , q}, telling us where we are in the program. Except for GOTO
statements, the counter increments after each instruction is executed.

• The space usage S, which starts at the size of the input.

• The word size w; the initial word size is dlog2 max(n+ 1, k + 1)e, where n is the length of the input
and k is the maximum constant appearing in the program or input.

• A constant number of registers R[0], . . . , R[r − 1], each of which is a w-bit word.

• Main memory M [0], . . . ,M [S − 1], each of which is a w-bit word.

The tuple (l, S, w,R,M) gives the configuration of the word-RAM.

We say that a word-RAM solves a computational problem f : Σ∗ → 2N
∗

if the machine which starts with
input x halts with some output in f(x) as the set of characters in M [0], . . . ,M [R[0]− 1].

As we saw with Turing Machines, there are many adjustments we can make to a model which make it
easier to reason about without significantly changing its power. Here’s one for word-RAMs:

Exercise. We define a 2-D word-RAM model: Suppose that main memory, instead of being represented by
a one-dimensional array of size S, is represented by a two-dimensional array of size S × S. Consequently,
saves or loads from main memory require addressing it using two registers; as before, MALLOC increases
S by 1 (and consequently the size of memory by 2S + 1).

Prove that a computational problem can be solved by a 2-D word-RAM model in polynomial time if and
only if it can be solved by regular word-RAM model in polynomial time. In this problem, provide a formal
description of how to convert between the two models.

1

Solution.
(=⇒) Intuition: To simulate a 1-D word-RAM by a 2-D one, simply ignore all rows but the first, and
whenever addressing some word in main memory, let the second index always equal 0. (That is, we keep
one extra register in which we initially load the value 0, and then use that register only for the second
index.)

Formal description: To turn this idea into a formal description, given a 1-D word-RAM program P =
(P1, . . . , Pq) with r registers, we have to give the code for an equivalent 2-D word-RAM program that
works along the lines discussed above. Define the following equivalent 2-D word-RAM program P ′ =
(P ′0, P

′
1, . . . , P

′
q): P has r+ 1 registers, and the instructions of P ′ are obtained largely by those of P in the

following way (where we go over all possible instruction schemas, using the ordering in the lecture notes
on word-RAMs):

1. Let P ′0 be R[r] = 0

2. For i = 0, . . . , q:

(a) If Pi is of the form R[i]← m, let P ′i = Pi;

(b) If Pi is of the form R[i]← R[j] +R[k], let P ′i = Pi;

(c) . . .

(d) If Pi is of the form R[i]← bR[j]/R[k]c, let P ′i = Pi.

(e) If Pi is of the form R[i]←M [R[j]], let P ′i be R[i]←M [R[r]][R[j]]

(f) If Pi is of the form M [R[j]]← R[i], let P ′i be M [R[r]][R[j]]← R[i].

(g) If Pi is of the form IF R[i] = 0, GOTO l, let P ′i be IF R[i] = 0, GOTO l + 1.

(h) . . .

So, apart from GOTO, which we have to change because we added a new row in the beginning, we only
change the instructions having to do with memory access, by modifying them so that they act as if the first
row of the 2-D word-RAM stands for the memory of the 1-D word-RAM. Notice that since MALLOC on
the 2-D word-RAM restricts to the equivalent of MALLOC on the 1-D word-RAM on the first row under
our identification, no change is required in the way the MALLOC operation works.

Running time and correctness: The fact that P ′ is correct follows by a straightforward induction on
the number of instructions: after t+ 1 instructions of P ′ have been executed, when we restrict the memory
of P ′ to the first row and the registers to the first r registers, we’re in the same state as after t instructions
of P have been executed.

For running time, notice that if P takes t steps to halt on some input, P ′ will take exactly t + 1 steps to
halt. The wanted time bound follows directly.

(⇐=) Intuition: To simulate a 2-D word-RAM by a 1-D one, we have to be careful about two things:
simulating the MALLOC operation, and simulating the indexing into a two-dimensional array by indexing
into a one-dimensional one.

For the MALLOC operation, we use an extra register to keep track of the value of S; then, when the 2-D
word-RAM would do a malloc, we instead load 2S + 1 into a second extra register (we may need a third
one to hold the constants for this computation), and make that many MALLOCs in our 1-D simulation,
decrementing the register as we go.

2

A convenient way to deal with the second problem, meanwhile, when the dimensions S×S are fixed, would
be to let the entry M2[i][j] correspond to the entry M1[iS + j]. However, S is not fixed in general, so
if we want to keep with that nice formula we’d have to reorganize the memory contents every time we
MALLOC.

To avoid this, we can index our 1-dimensional array in another way: let the cell [0][0] correspond to the cell 0,
and then, think of expanding the square representing the 2-dimensional memory inductively, by increasing
its current sidelength S by one, and appending the new cells [S][0], [S][1], . . . , [S][S], [S − 1][S], . . . , [0][S]
to the 1-dimensional memory in this order. We can write down concrete formulas for this identification:
the cell [i][j] is represented by [i2 + j] if i ≥ j and [j2 + j + (j − i)] otherwise.

Formal description: We proceed in a way similar to what we did for easy direction; only now things
require more careful adjusting.

So, to turn our idea into a formal description, given a 1-D word-RAM program P = (P1, . . . , Pq) with r
registers, we have to give the code for an equivalent 2-D word-RAM program P ′ that works along the lines
discussed above.

One trickier thing we have to deal with, and one that our high-level discussion ignored, is GOTO statements:
since we’ll be substituting single instructions to the 2-D word-RAM with blocks of several instructions to
the 1-D word-RAM, we have to be careful about the numbering of lines in our program.

So as we are converting the instructions (of which there are only constantly many, as we’re working with
a fixed program), we must keep track of how many of each kind we’ve seen so far, and with how many
instructions we’re replacing each, so that we know at which line we are, and to which line we want to get.
Since we’ll be replacing each instruction to the 2-D word-RAM of a given form with the same number of
instructions to the 1-D word-RAM, this is a very doable task that we can do even before we’ve started
conversion, just by counting the instructions of various types present in P . We’ll assume we’ve done that,
and suppress the explicit formulas for conversion in the code below, by letting f(l) stand for the function
giving the number of line l from the 2-D word-RAM program in the 1-D word-RAM program, and L stand
for the current line number in the 1-D word-RAM program (you can think of these functions as of lookup
tables).

We define the following 1-D word-RAM program P ′: P ′ has r + 7 registers, and the instructions of P ′ are
obtained from those of P in the following way (where we go over all possible instruction schemas, using
the ordering in the lecture notes on word-RAMs):

1. Let P ′0 be R[r]← R[1] (initialize current memory usage S, as R[1] holds n)

2. Let P ′1 be R[r + 5]← 0 (keep the constant 0 for ease of control flow)

3. Let P ′2 be R[r + 6]← 1 (keep the constant 1)

4. For i = 0, . . . , q: (replace instructions of P by suitable equivalents)

(a) If Pi is of the form R[i]← m, append Pi to the current program P ′; (instructions that don’t
touch memory, or MALLOC, or GOTO, are left intact)

(b) If Pi is of the form R[i]← R[j] +R[k], append Pi to the current program P ′

(c) . . .

(d) If Pi is of the form R[i]← bR[j]/R[k]c, append Pi to the current program P ′.

3

(e) If Pi is of the form M [R[i]][R[j]] ← R[k] or R[k] ← M [R[i]][R[j]], we append the following
several instructions to the current program P ′:

i. R[r + 1]← R[i] (prepare temporary variables)

ii. R[r + 2]← R[j]

iii. R[r + 3]← bR[r + 1]/R[r + 2]c (test if i < j)

iv. IF R[r + 3] = 0, GOTO L+ 4 (in this case, i < j, so we skip ahead to the relevant
computation)

v. R[r + 3]← R[r + 1] ·R[r + 1] (this branch computes R[i]2 +R[j]

vi. R[r + 3]← R[r + 3] +R[r + 2]

vii. IF R[r + 5] = 0, GOTO L+ 5 (this will always be true, as we keep R[r + 5] = 0)

viii. R[r + 3]← R[r + 2] ·R[r + 2] (this branch computes R[j]2 +R[j] + (R[j]−R[i]))

ix. R[r + 3]← R[r + 3] +R[r + 2]

x. R[r + 3]← R[r + 3] +R[r + 2]

xi. R[r + 3]← R[r + 3]−R[r + 1]

xii. M [R[r + 3]]← R[k], or R[k]← M [R[r + 3]], according to which the form of the command
we’re replacing.

(f) If Pi is of the form IF R[i] = 0, GOTO l, append IF R[i] = 0, GOTO f(l) to the current
program P ′.

(g) If Pi is of the form MALLOC, append the following several instructions to the program:

i. R[r + 4]← R[r] (copy current memory usage S of the 2-D RAM, and increment it)

ii. R[r]← R[r] +R[r + 6]. (recall R[r + 6] = 1)

iii. R[r + 4]← R[r + 4] +R[r + 4] (compute 2S + 1)

iv. R[r + 4]← R[r + 4] +R[r + 6]

v. IF R[r + 4] = 0, GOTO L+ 4 (loop to do 2S + 1 MALLOC-s on 1-D word-RAM)

vi. MALLOC

vii. R[r + 4]← R[r + 4]−R[r + 6]

viii. IF R[r + 5] = 0, GOTO L − 3

Running time and correctness: Correctness follows in a similar way as before; now the claim is that
after t instructions in P , and the corresponding t′ instructions in P ′, the two machines are in the same
state under our identification between the 2-dimensional memory and the 1-dimensional memory via the
formulas we wrote down in the beginning.

For running time, each instruction of P is simulated in O(1) instructions of P ′, except for MALLOC, which
takes O(S) instructions, where S is the current sidelength of the square representing the memory of P .
Since S can increase by at most 1 for each step of P , S is never more than the running time T (n) of P ,
hence the running time of P ′ is never more than O(T (n)×O(T (n))) = O(T 2(n)).

4

2 Turing Machines

Formally, a Turing machines is a 6-tuple M = (Q,Σ,Γ, δ, q0, qhalt), where

• Q is a finite set of states.

– This means you can use your states to do finite counting (e.g. modulo 2), but not counting to
arbitrarily large numbers.

– Sometimes, instead of having a single qhalt state, people will talk about having a qreject and
qaccept state.

• Σ is the input alphabet.

• Γ is the tape alpabet, with Σ ⊂ Γ and t ∈ Γ− Σ.

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function.

– As we saw in class, we can simulate a multiple tape Turing machine with a single tape ; in this
case, if we have k tapes, the transition function is δ : Q× Γk → Q× Γk × {L,R}k.

– We’ll often also allow an S for staying still; this does not change the power of the TM.

• q0, qaccept, qreject ∈ Q are the start state, accept state, and reject state. respectively

A Turing machine configuration is a string uqv ∈ Γ∗QΓ∗ that encodes (i) the state q of M , (ii) the tape
contents uv ignoring trailing blanks, and (iii) the location of the head within the tape. The starting
configuration is q0x.

We say that a Turing Machine solves a computational problem f : Σ∗ → 2(Γ/t)∗ if the Turing machine
which starts with input x halts with some output in f(x) as the set of characters before the first t.

The extended Church-Turing Thesis says that every reasonable model of computation can be simulated
on a Turing machine with only a polynomial slowdown.

Exercise. Give the state diagram for a Turing machine which converts unary to binary (that is, given the
input 1x, it should return the binary representation of x).

Solution.
We give a two-tape Turing machine, which does the following:

• Adds a special start symbol $ to the beginning of the tape and shifts the input 1 character right
(q0 → qS → . . .→ qS → q1).

• Going left until it hits the $, counts the number of 1’s by incrementing on the second tape, keeping
the answer written in reverse on the second tape (q1 → q2 → q3 → q1). Each time it returns to q1,
the head of the second tape is at the first character after the $.

• It removes the $ at the start of the first tape and scrolls the head of the second tape to the end of
its string (q1 → qm → qr).

• It copies the second tape backwards onto the first tape, halting when it reaches the $ at the start of
the second tape (qr → qhalt).

5

t,Γ→ t,t, L, L

1,Γ→ $, $, R,R

1,Γ⇒ 1,t, R, S

t,Γ→ 1,t, S, S

1,Γ⇒ t,Γ, L, S

Γ, 1⇒ Γ, 0, S,R

Γ, 0 or t ⇒ Γ, 1, S, L

Γ,Γ− $⇒ Γ,Γ− $, S, L

Γ, $⇒ Γ, $, S,R

$,Γ→ t,Γ, L,R

t,Γ− t → t,Γ− t, S,R

t,t → t,t, S, L

t, ∗ → ∗,t, R, L

t, $→ t,t, S, S

q0

qhalt

qS q1 qm

q2 q3

qr

The runtime of this machine is O(n log n), where n is the length of the input. Note that in the diagram
above, we have omitted “impossible” arrows, e.g. ones that the machine will never follow given a valid
input.

Often, when we talk about computational problems, we talk about decision problems, where the output is
in {0, 1}; this is the same idea as deciding whether the given string is in some language L ∈ Σ∗.

However, in many cases the problem of finding a solution is not necessarily more “difficult” than the
problem of determining whether there exists one. You’re asked to prove a few of these on your homework;
we’ll look at one more of them here.

Exercise. Show that there is a polynomial-time algorithm for 3-Satisfiability (given a boolean formula
in 3-CNF form, determine whether there exists a satisfying assignment) if and only if the computational
problem of finding a satisfying assignment (or returning nothing if none exists) is in P.

For this problem, you can use high-level algorithm descriptions.

Solution.
(⇐=) Clearly, if we can find a satisfying assignment, then we can determine whether there exists one.

(=⇒) Now suppose we have an algorithm A that decides in polynomial time whether a given 3-CNF
formula φ has a satisfying assignment.

How can we use A to find such an assignment? The idea is to set the variables one by one, and make sure
that the remaining formula still has a satisfying assignment along the way.

Algorithm: So, let φi1,...,it stand for the formula φ with partial assignment x1 = i1, . . . , xt = it; then
φi1,...,it can easily be written in 3-CNF form (why? there is a detailed explanation in the more formal
solution given below). If A(φ) returns FALSE, we return nothing. Otherwise, we run A(φ1). If that gives

6

TRUE, we assign x1 = 1 and repeat with the formula φ1 instead of φ; if it gives FALSE, it must be the
case that A(φ0) is TRUE, so we repeat with φ0 instead of φ. In the end we have a formula φi1,...,in which
is satisfiable, but is also a constant, therefore xj = ij gives a satisfying assignment.

Correctness and running time: From the above discussion, correctness is clear. The running time will
be O(nT (n)) where T (n) is the running time of the decider for satisfiability, hence it is polynomial.

More detail: TM implementation. Here’s a more low-level solution to give you more practice with
TMs:

Suppose that we have some Turing Machine M , which, given an input, determines whether there exists a
satisfying assignment. We go about actually finding a satisfying assignment as follows:

• Simulate M on the input (after copying the input to a second tape); if M returns false, then halt
and return nothing.

• Now, try setting x1 = 1 in the formula, e.g. copy the formula onto a second tape, removing any
clauses which are satisfied (i.e. contain x1) and removing any instances of ¬x1. If the latter results
in any empty clauses, e.g. saying that this is not a satisfying assignment, set x1 = 0.

• Run M on the output of the previous step; if M returns true, then set x1 = 1 in the original copy of
the formula. Otherwise, set x1 = 0.

• Repeat the previous two steps with x2, . . . , xn in sequence. The final result will be a satisfying
solution.

Here, we see that we simulate M at most n times, and that the length of the input to M is no more
than the length of the input to our original problem. Meanwhile, all the other steps (copying the formula,
setting the value of variable) take no more than linear time and run only polynomially many times, so they
also run in polynomial time. Hence, this entire algorithm runs in polynomial time.

There are many details that we don’t address in the solution above because we are working at a higher level
(e.g. clearing a tape so that we can reuse it in multiple simulations of M); however, you should convince
yourself that all of these are doable, and none of these have a significant affect on the runtime.

7

	RAM
	Turing Machines

