
CS 124 Section #9 Randomized Algorithms 11/08/16

1 Definitions

A randomized algorithm is an algorithm that is able to make fair coin tosses during its execution. Unlike
a deterministic algorithm, when you describe how a randomized algorithm works, you can say ”choose x
randomly” rather than having to specifically say which x you are choosing. As discussed in lecture, the
two main types of randomized algorithms are:

1. Las Vegas Algorithm: Always produces the correct result, but run-time is dependent on the
random choices made during the algorithm.

• Analysis: Once we prove that the algorithm is correct, we also need to calculate that its
expected run-time. This allows us to use inequalities like Markov’s to say that there is a high
chance the algorithm will be efficient.

• Example from Class: Quicksort and Quickselect

2. Monte Carlo Algorithm: Always finishes in a set amount of time, but the result may or may
not be correct.

• Analysis: We want to find a lower bound on the probability that the algorithm produces the
correct result. For example, if we show that a Monte Carlo algorithm X is correct at least 1

2
of the time, then we can simply run X multiple times and our chances of getting an incorrect
answer diminish exponentially.

• Example from Class: Freivalds algorithm for matrix multiplication verification

2 Integer Multiplication Checking

In this problem, we are given three integers a, b and c and want to determine whether or not a · b = c.
Suppose that 0 ≤ a, b < 10250,000 and 0 ≤ c < 10500,000 so actually performing the multiplication would not
be feasible. Suppose that we are given a, b and c as strings (and thus do not have to worry about integer
overflow on our machines).

Describe a Monte Carlo randomized algorithm that determines whether or not a · b = c and analyze it’s
accuracy.

Exercise. As a first step, consider I told you to check whether 23898239 ·19392981 = 83431298313 is true.
How can you tell me immediately that the answer is FALSE?

Solution.
We can take both numbers mod 10, and look at it’s last digit. Something ending in 9 times something
ending in 1 can’t be something ending in 3.

Exercise. Generalize your strategy from above to come up with an algorithm that tests whether a · b = c.

1

Solution.
Let p be a large prime number. We simply check whether a(mod p) · b(mod p) = c(mod p). If equality
does not hold, then we know immediately that a · b 6= c. However, we may get false positives where the
equality holds when taken mod p, but equality does not actually hold between a · b and c.

Exercise. Using the Prime Number Theorem, which says that there are Θ(n/ lnn) primes less than n,
bound the failure probability of your algorithm.

Solution.
We get a false positive if a · b − c is a multiple of p. Let d = |a · b − c|. We know that d < 10500,000 so
therefore d can have at most 500, 000 distinct prime factors. Suppose we randomly chose a prime number
below 1018. Then, by the prime number theorem, there were about 1018/ ln(1018) ≈ 2.4 × 1016 choices.
In the worst case, each of the up to 500,000 prime divisors of d are in this range, so at worst there is a
500,000
2.4×1016

= 4.2×10−12 that p divides d. This is an upper bound on the failure probability, so 1−4.2×10−12

is a lower bound on the probability of success, which as you can see is very very high.

Exercise. Describe how you would implement such an algorithm that takes a, b and c as strings and returns
whether a · b = c.

Solution.
We cannot simply convert a, b and c into integers because our numbers are absurdly large. Therefore, we
will need to work with the given strings and extract digits as we go. The process of finding a mod p more
efficiently is as follows:

Start with the left-most digit and move towards the right. Initialize a variable total to the left-most digit
and iteratively multiply total by 10, add the next digit and mod by p. This allows us to in time linear in
the number of digits of a, b and c, calculate them mod p.

2

3 Hashing

Remember from class that a hash function is a mapping h : {0, . . . , n − 1} → {0, . . . ,m − 1}. In most
applications of hashing, you’ll typically see m < n. (Why?) Hashing-based data structures are useful
since they ideally allow for constant time operations (lookup, adding, and deletion), although collisions
can change that if, for example, m is too large or you use a poorly chosen hash function. Why would these
conditions generally increase the number of collisions?

In the following problems, we will assume that our hash function h is a simple uniform hash. This
means that h evenly distributes {0, 1, 2, . . . n − 1} among the m buckets. More formally, this means that
P (h(x) = h(y)) = 1

m for all x, y ∈ {0, 1, 2, . . . n− 1}.

Exercise. Suppose we use a hash function h to hash n distinct keys into m buckets. Assuming simple
uniform hashing, what is the expected number of collisions? More formally, for how many distinct keys
k1, k2 do we have h(k1) = h(k2)?

Solution.
Let the indicator variable Xij be 1 if h(ki) = h(kj) and 0 otherwise for all i 6= j. Then, let X be a random
variable representing the total number of collisions. It can be calculated as the sum of all the Xij ’s:

X =
∑
i<j

Xij

Now, we take the expectation and use linearity of expectation to get:

E[X] = E[
∑
i<j

Xij] =
∑
i<j

E[Xij] =
∑
i<j

P (h(ki) = h(kj)) =
∑
i<j

1

m
=

n(n− 1)

2m

Exercise. Use your probability skills for these hashing problems:

1. Suppose I hash n items into m buckets with a simple uniform hash. What’s the expected number of
buckets that have exactly one item? At least 2 items? k items?

2. How large must n be so that the probability of a collision is at least 1
2? (Don’t actually work it out -

just say how you’d do it)

Solution. 1. The probability that a bucket has k items is
(
n
k

) (
1
m

)k (
1− 1

m

)n−k
. For k = 1, there are,

on average, n
(
1− 1

m

)n−1
buckets with exactly one item. The number with at least 2 items is:

m− (# with 1 item)− (# with 0 items) = m− n

(
1− 1

m

)n−1

−m

(
1− 1

m

)n

2. This is just the birthday problem.

3

There are several ways to deal with collisions while hashing, such as:

• Linear probing: If f(x) already has an item, try f(x) + 1, f(x) + 2, etc. until you find an empty
location (all taken mod m).

• Chaining: Each bucket holds a set of all items that are hashed to it. Simply add x to this set.

• Double hashing: Use two hash functions: f(i, x) = f1(x)+if2(x). If f(0, x) is taken, try f(1, x), f(2, x), etc.
until you find an empty location. This generalizes linear probing.

• Cuckoo hashing: Again, use two hash functions and place x in either f1(x) or f2(x). If there’s a
collision with object y, push y out to it’s other location and keep repeating until there are no more
collisions.

3.1 Bloom Filters

A Bloom Filter is a probabilistic data structure, used for set membership problems, that are more space
efficient than conventional hashing schemes. There are m bits and k hash functions f1, . . . , fk. When
adding an element x to the set, set bits f1(x), . . . , fk(x) to 1. To check if x is already in the set, check if the
corresponding bits are set to 1. Typically, the buckets are split up into k tables, with each hash function
“addressing” a single table.

Exercise. Can you delete an element from a Bloom filter?

Solution.
No. Try it! If you set the ith bit to 0, you have effectively deleted every other element x for which fj(x) = i
for some j.

Bloom filters are probabilistic structures since it’s possible to get false positives, but never false negatives.
That is, querying for membership of y may return true if y hasn’t been added to the set but will never
return false if it has.

Exercise. What’s the probability of a false positive? That is, what is the probability that an element is
actually not in the set, but the k hashes all turn out to be 1? Suppose that n items have been inserted into
our bloom filter so far.

Solution.
In a single table of size m

k , the probability that the relevant bit is 0 is
(

1− 1
m/k

)n
≈ e−nk/m. This means

that none of the n items previously inserted have touched that particular bit. Therefore, the probability
that that particular bit is 1 is 1 − e−nk/m. If we want a false positive, then for each of the k tables, that

particular bit must be set to 1, so our final aswer is
(
1− e−nk/m

)k
.

4

	Definitions
	Integer Multiplication Checking
	Hashing
	Bloom Filters

