
CS 125 Section #11 PCPs and hardness of approximation November 29, 2016

1 2-query PCPs

Recall the definition of the complexity class PCP(r(n), q(n)) from class.
Definition 1.
We say a language L is in the complexity class PCP(r(n), q(n)) if there is a poly-time randomized verifier
V such that for any x ∈ {0, 1}∗, if we let n denote |x| then

1. On input 〈x, π〉, V reads x, tosses r(n) coins, reads q(n) bits of π, then accepts or rejects.

2. Completeness: if x ∈ L, then there exists π ∈ {0, 1}poly(n) such that α
def
= Pr(V (x, π) = 1) = 1.

3. Soundness: if x /∈ L, then for all π ∈ {0, 1}poly(n), we have ρ
def
= Pr(V (x, π) = 1) ≤ 1/2.

In class we stated that NP = PCP(O(log n), q) for some universal constant q > 0.

Recall in class that we stated H
◦
astad gave a 3-query PCP for SAT with completeness α = 1 − ε and

soundness ρ = 1/2 + δ for any ε, δ ∈ (0, 1). In his PCP, the alphabet was binary, i.e. the proof was a string
π ∈ {0, 1}poly(n). What if we sought 2-query PCPs with perfect completeness?

Exercise. Show that P = PCP(O(log n), 2).

Solution.
We show both P ⊆ PCP(O(log n), 2) and PCP(O(log n), 2) ⊆ P.

P ⊆ PCP(O(log n), 2): Supposing L ∈ P , we give a desired proof system for L. The proof is simply the
empty string. The verifier V flips 0 random bits and doesn’t look at the proof, and simply decides whether
x ∈ L in polynomial time. The soundess is 0 and the completeness is 1.

PCP(O(log n), 2) ⊆ P: Suppose L ∈ PCP(O(log n, 2)), with verifier V . The proof in this case is similar
to Theorem 22.6 and Theorem 22.8 from Lecture Notes 22. We reiterate the important details here. First,
perfect completeness and soundness ρ ≤ 1/2 implies that we can decide x ∈ L via a ρ-gap2CSP instance.
To remind the reader, whether V accepts or not is based on two queries to a supposed proof π ∈ {0, 1}N
for some N ≤ poly(n). Thus for each random string r ∈ {0, 1}R for R = O(log n), there is a function
Vx,r : {0, 1}N → {0, 1} such that Vx,r(π) = 1 iff V on input x and random coin flips r would accept the
proof π. Note that Vx,r only depends on 2 bits in π. Thus Vx,r can be written as a 2-CNF formula ϕx,r as
per Theorem 22.8 of the lecture notes (and similarly to the proof that 3-SAT is NP-hard). Then, we can
create a 2-CNF formula

ϕx =
∧

r∈{0,1}R
ϕx,r.

Note ϕx has polynomial size since R = O(log n). Then because of the completeness and soundness con-
ditions, ϕx is satisfiable iff x ∈ L (note we thus only need soundness ρ < 1 for this proof to work, not
soundness 1/2!). But deciding whether ϕx is satisfiable can be done in polynomial time, since 2SAT ∈ P.

1

Despite the above exercise, we can get 2-query PCPs as long as we are willing to change the alphabet size.
That is, rather than work with proofs π ∈ {0, 1}poly(n), we work with proofs π ∈ Σpoly(n) for some |Σ| > 2.
Then the verifier is only allowed to read q symbols in the proof π, as opposed to q bits.

Let us alter our PCP notation to include more information. We let PCPΣ
α,ρ(r(n), q(n)) denote the class

as defined above, but where the alphabet for π is Σ, the completeness is α, and the soundness is ρ.

Exercise. For any constant q, show that PCPΣ
α,1−ε(r(n), q) ⊆ PCPΣq

α,1−ε/q(r(n) + log q, 2).

Solution.
Suppose L ∈ PCPΣ

α,1−ε(r(n), q). Then there is some verifier V which flips R = r(n) coins and does

polynomial computation on x, then accepts iff some predicate Vx,r : ΣN → {0, 1} for some N ≤ poly(n)
gives Vx,r(π) = 1, where Vx,r depends on only q symbols of π.

We now construct a verifier V ′ to show L ∈ PCPΣq

α,1−ε/q(r(n) + log q, 2). V ′ flips r(n) bits as before, as

well as an additional log2 q bits to pick a random index j ∈ {1, . . . , q} (if q is not a power of 2 then round
it up to a power of 2, then ignore the symbols read during the additional queries). V ′ then expects a proof
of the form (π, π′), where π ∈ ΣN and π′ ∈ (Σq)N

q
. π is expected to be a proof exactly as in the last

paragraph, and π′ is expected to be of the form π′(i1,...,iq) = (πi1 , . . . , πiq). V
′ then uses its random bitstring

t of length r(n) to pick i1, . . . , iq just as V would, then reads the symbol π′(i1,...,iq) = (σ1, . . . , σq) (that’s

one query). It then also queries πij (that’s the second query). V ′ then accepts iff Vx,t(σ1, . . . , σq) = 1 and
πij = σj .

If x ∈ L, then a proof does exist to make V ′ accepts with probability α: namely, let π be the same proof
that worked for V , and let π′ be the proof with π′(i1,...,iq) = (πi1 , . . . , πiq).

If x /∈ L, then consider any proof (π, π′). We know by assumption that for any π, V would reject π with
probability at least ε (i.e. over its random choices of i1, . . . , iq, V would reject (πi1 , . . . , πiq) with probability
at least ε). When V ′ performs its query, its indices i1, . . . , iq are chosen according to the same probability
distribution, and thus with probability at least ε, this choice would lead to proof probes which V would
reject. Then there are two scenarios: (1) either π′(i1,...,iq) = (πi1 , . . . , πiq), or (2) they are not equal. In the

first case, V ′ would reject. In the second case, it would reject with probability at least 1/q, since we check
consistency with πij for a random j. Thus V ′ rejects with probability at least ε/q, as desired.

Note that the previous exercise, together with the PCP theorem, implies that for some constant q,

NP ⊆ PCP1,1/2(O(log n), q) ⊆ PCP
{0,1}q
1,1−1/(2q)(O(log n), 2).

Raz’s parallel repetition theorem allows us to decrease the soundness exponentially in t, by asking t
questions in parallel. Specifically, Raz’s parallel repetition theorem implies

∀ρ ∈ (0, 1), ∃cρ ∈ (0, ρ), PCPΣ
1,ρ(r(n), 2) ⊆ PCPΣt

1,ctρ
(t · r(n), 2).

Thus by taking t = O(log(1/ε)) we have altogether

∀ε > 0, ∃Σ (|Σ| ≤ poly(1/ε)) s.t. NP ⊆ PCPΣ
1,ε(O(log n · log(1/ε)), 2).

2

	2-query PCPs

