CS 125 Section #11 PCPs and hardness of approximation November 29, 2016

1 2-query PCPs

Recall the definition of the complexity class PCP(r(n), ¢(n)) from class.

Definition 1.

We say a language L is in the complexity class PCP(r(n), g(n)) if there is a poly-time randomized verifier
V such that for any = € {0, 1}, if we let n denote |x| then

1. On input (z,m), V reads z, tosses r(n) coins, reads ¢(n) bits of 7, then accepts or rejects.
2. Completeness: if z € L, then there exists 7 € {0, 1}P°Y(™) such that o & Pr(V(z,m)=1)=1.

3. Soundness: if ¢ L, then for all = € {0, 1}P°¥() we have pd:ef Pr(V(z,m)=1) <1/2.
In class we stated that NP = PCP(O(logn), q) for some universal constant ¢ > 0.

Recall in class that we stated Hastad gave a 3-query PCP for SAT with completeness « = 1 — ¢ and
soundness p = 1/2+ 0 for any €,0 € (0,1). In his PCP, the alphabet was binary, i.e. the proof was a string
m € {0, l}pOly("). What if we sought 2-query PCPs with perfect completeness?

Exercise. Show that P = PCP(O(logn),2).

Solution.
We show both P C PCP(O(logn),2) and PCP(O(logn),2) C P.

P C PCP(O(logn),2): Supposing L € P, we give a desired proof system for L. The proof is simply the
empty string. The verifier V' flips 0 random bits and doesn’t look at the proof, and simply decides whether
x € L in polynomial time. The soundess is 0 and the completeness is 1.

PCP(O(logn),2) CP: Suppose L € PCP(O(logn,2)), with verifier V. The proof in this case is similar
to Theorem 22.6 and Theorem 22.8 from Lecture Notes 22. We reiterate the important details here. First,
perfect completeness and soundness p < 1/2 implies that we can decide z € L via a p-gap2CSP instance.
To remind the reader, whether V' accepts or not is based on two queries to a supposed proof © € {0, 1}V
for some N < poly(n). Thus for each random string r € {0,1}# for R = O(logn), there is a function
Ver o {0,1}" — {0,1} such that V, ,.(7) = 1 iff V on input = and random coin flips 7 would accept the
proof 7. Note that V,, , only depends on 2 bits in 7. Thus V,,, can be written as a 2-CNF formula ¢, , as
per Theorem 22.8 of the lecture notes (and similarly to the proof that 3-SAT is NP-hard). Then, we can
create a 2-CNF formula
Pz = /\ Px,r-

re{0,1} £

Note ¢, has polynomial size since R = O(logn). Then because of the completeness and soundness con-
ditions, ¢, is satisfiable iff x € L (note we thus only need soundness p < 1 for this proof to work, not
soundness 1/2!). But deciding whether ¢, is satisfiable can be done in polynomial time, since 2SAT € P.

Despite the above exercise, we can get 2-query PCPs as long as we are willing to change the alphabet size.
That is, rather than work with proofs © € {0,1}?°%(") we work with proofs m € X% for some |%| > 2.
Then the verifier is only allowed to read g symbols in the proof 7, as opposed to g bits.

Let us alter our PCP notation to include more information. We let PCPE, »(r(n),q(n)) denote the class
as defined above, but where the alphabet for 7 is X, the completeness is «, and the soundness is p.

Exercise. For any constant q, show that PCPEJ,S(r(n),q) C PCPiql_a/q(r(n) +loggq,2).

Solution.
Suppose L € PCPZ,__(r(n),q). Then there is some verifier V' which flips R = 7(n) coins and does

a,l—¢e
polynomial computation on z, then accepts iff some predicate V., : ¥V — {0,1} for some N < poly(n)
gives V. »(m) = 1, where V,,, depends on only ¢ symbols of .

We now construct a verifier V' to show L € PCPEqPE/q(T(n) +logq,2). V' flips r(n) bits as before, as

[0
well as an additional log, ¢ bits to pick a random index j € {1,...,q} (if ¢ is not a power of 2 then round

it up to a power of 2, then ignore the symbols read during the additional queries). V' then expects a proof
of the form (m,7’), where 7 € ¥V and ©' € (X9)V". 7 is expected to be a proof exactly as in the last

paragraph, and 7’ is expected to be of the form WEil i) = (Tiys -+, mi,). V' then uses its random bitstring
1t vq

t of length r(n) to pick i1,...,4, just as V' would, then reads the symbol =/ = (01,...,04) (that’s

(i1,-+-,1q)
one query). It then also queries 7;; (that’s the second query). V' then accepts iff V, ¢(01,...,04) =1 and

T .

J:Uj-

If # € L, then a proof does exist to make V' accepts with probability a: namely, let © be the same proof

that worked for V', and let ©’ be the proof with WZil,...,iq) = (Tiyy vy Tig)-

If © ¢ L, then consider any proof (7, 7"). We know by assumption that for any 7, V would reject © with
probability at least € (i.e. over its random choices of iy, . .., 44, V would reject (m;,, ..., m;,) with probability
at least €). When V’ performs its query, its indices i1, ..., %, are chosen according to the same probability
distribution, and thus with probability at least e, this choice would lead to proof probes which V' would
reject. Then there are two scenarios: (1) either Wzih.-.,iq) = (iy, ..., ™), or (2) they are not equal. In the

first case, V/ would reject. In the second case, it would reject with probability at least 1/¢, since we check
consistency with ;; for a random j. Thus V' rejects with probability at least €/q, as desired.

Note that the previous exercise, together with the PCP theorem, implies that for some constant g,

NP C PCP,5(O(logn),q) € PCP{Y | (O(logn),2).

Raz’s parallel repetition theorem allows us to decrease the soundness exponentially in ¢, by asking ¢
questions in parallel. Specifically, Raz’s parallel repetition theorem implies

¥p € (0,1), Jc, € (0,p), PCPY,(r(n),2) C PCPEZ;(t -r(n),2).

Thus by taking t = O(log(1/¢)) we have altogether

Ve > 0,32 (|X| < poly(1/e)) s.t. NP C PCP%E(O(logn -log(1/¢)),2).

	2-query PCPs

