1 2-query PCPs

Recall the definition of the complexity class $\mathbf{P C P}(r(n), q(n))$ from class.

Definition 1.

We say a language L is in the complexity class $\mathbf{P C P}(r(n), q(n))$ if there is a poly-time randomized verifier V such that for any $x \in\{0,1\}^{*}$, if we let n denote $|x|$ then

1. On input $\langle x, \pi\rangle, V$ reads x, tosses $r(n)$ coins, reads $q(n)$ bits of π, then accepts or rejects.
2. Completeness: if $x \in L$, then there exists $\pi \in\{0,1\}^{\text {poly }(n)}$ such that $\alpha \stackrel{\text { def }}{=} \operatorname{Pr}(V(x, \pi)=1)=1$.
3. Soundness: if $x \notin L$, then for all $\pi \in\{0,1\}^{\text {poly }(n)}$, we have $\rho \stackrel{\text { def }}{=} \operatorname{Pr}(V(x, \pi)=1) \leq 1 / 2$.

In class we stated that $\mathbf{N P}=\mathbf{P C P}(O(\log n), q)$ for some universal constant $q>0$.
Recall in class that we stated Håstad gave a 3-query PCP for SAT with completeness $\alpha=1-\varepsilon$ and soundness $\rho=1 / 2+\delta$ for any $\varepsilon, \delta \in(0,1)$. In his PCP, the alphabet was binary, i.e. the proof was a string $\pi \in\{0,1\}^{\text {poly }(n)}$. What if we sought 2-query PCPs with perfect completeness?

Exercise. Show that $\mathbf{P}=\mathbf{P C P}(O(\log n), 2)$.

Solution.

We show both $\mathbf{P} \subseteq \mathbf{P C P}(O(\log n), 2)$ and $\mathbf{P C P}(O(\log n), 2) \subseteq \mathbf{P}$.
$\mathbf{P} \subseteq \mathbf{P C P}(O(\log n), 2)$: \quad Supposing $L \in P$, we give a desired proof system for L. The proof is simply the empty string. The verifier V flips 0 random bits and doesn't look at the proof, and simply decides whether $x \in L$ in polynomial time. The soundess is 0 and the completeness is 1 .
$\mathbf{P C P}(O(\log n), 2) \subseteq \mathbf{P}: \quad$ Suppose $L \in \mathbf{P C P}(O(\log n, 2))$, with verifier V. The proof in this case is similar to Theorem 22.6 and Theorem 22.8 from Lecture Notes 22 . We reiterate the important details here. First, perfect completeness and soundness $\rho \leq 1 / 2$ implies that we can decide $x \in L$ via a ρ-gap2CSP instance. To remind the reader, whether V accepts or not is based on two queries to a supposed proof $\pi \in\{0,1\}^{N}$ for some $N \leq \operatorname{poly}(n)$. Thus for each random string $r \in\{0,1\}^{R}$ for $R=O(\log n)$, there is a function $V_{x, r}:\{0,1\}^{N} \rightarrow\{0,1\}$ such that $V_{x, r}(\pi)=1$ iff V on input x and random coin flips r would accept the proof π. Note that $V_{x, r}$ only depends on 2 bits in π. Thus $V_{x, r}$ can be written as a 2-CNF formula $\varphi_{x, r}$ as per Theorem 22.8 of the lecture notes (and similarly to the proof that 3-SAT is NP-hard). Then, we can create a 2 -CNF formula

$$
\varphi_{x}=\bigwedge_{r \in\{0,1\}^{R}} \varphi_{x, r} .
$$

Note φ_{x} has polynomial size since $R=O(\log n)$. Then because of the completeness and soundness conditions, φ_{x} is satisfiable iff $x \in L$ (note we thus only need soundness $\rho<1$ for this proof to work, not soundness $1 / 2!$). But deciding whether φ_{x} is satisfiable can be done in polynomial time, since 2SAT $\in \mathbf{P}$.

Despite the above exercise, we can get 2-query PCPs as long as we are willing to change the alphabet size. That is, rather than work with proofs $\pi \in\{0,1\}^{\text {poly(n) }}$, we work with proofs $\pi \in \Sigma^{\text {poly(n) }}$ for some $|\Sigma|>2$. Then the verifier is only allowed to read q symbols in the proof π, as opposed to q bits.

Let us alter our $\mathbf{P C P}$ notation to include more information. We let $\mathbf{P C P}{ }_{\alpha, \rho}^{\Sigma}(r(n), q(n))$ denote the class as defined above, but where the alphabet for π is Σ, the completeness is α, and the soundness is ρ.

Exercise. For any constant q, show that $\mathbf{P} \mathbf{C P}{ }_{\alpha, 1-\varepsilon}^{\Sigma}(r(n), q) \subseteq \mathbf{P C P}_{\alpha, 1-\varepsilon / q}^{\Sigma^{q}}(r(n)+\log q, 2)$.

Solution.

Suppose $L \in \mathbf{P C P}_{\alpha, 1-\varepsilon}^{\Sigma}(r(n), q)$. Then there is some verifier V which flips $R=r(n)$ coins and does polynomial computation on x, then accepts iff some predicate $V_{x, r}: \Sigma^{N} \rightarrow\{0,1\}$ for some $N \leq \operatorname{poly}(n)$ gives $V_{x, r}(\pi)=1$, where $V_{x, r}$ depends on only q symbols of π.
We now construct a verifier V^{\prime} to show $L \in \mathbf{P C P}_{\alpha, 1-\varepsilon / q}^{\Sigma^{q}}(r(n)+\log q, 2)$. V^{\prime} flips $r(n)$ bits as before, as well as an additional $\log _{2} q$ bits to pick a random index $j \in\{1, \ldots, q\}$ (if q is not a power of 2 then round it up to a power of 2 , then ignore the symbols read during the additional queries). V^{\prime} then expects a proof of the form $\left(\pi, \pi^{\prime}\right)$, where $\pi \in \Sigma^{N}$ and $\pi^{\prime} \in\left(\Sigma^{q}\right)^{N^{q}}$. π is expected to be a proof exactly as in the last paragraph, and π^{\prime} is expected to be of the form $\pi_{\left(i_{1}, \ldots, i_{q}\right)}^{\prime}=\left(\pi_{i_{1}}, \ldots, \pi_{i_{q}}\right)$. V^{\prime} then uses its random bitstring t of length $r(n)$ to pick i_{1}, \ldots, i_{q} just as V would, then reads the symbol $\pi_{\left(i_{1}, \ldots, i_{q}\right)}^{\prime}=\left(\sigma_{1}, \ldots, \sigma_{q}\right)$ (that's one query). It then also queries $\pi_{i_{j}}$ (that's the second query). V^{\prime} then accepts iff $V_{x, t}\left(\sigma_{1}, \ldots, \sigma_{q}\right)=1$ and $\pi_{i_{j}}=\sigma_{j}$.
If $x \in L$, then a proof does exist to make V^{\prime} accepts with probability α : namely, let π be the same proof that worked for V, and let π^{\prime} be the proof with $\pi_{\left(i_{1}, \ldots, i_{q}\right)}^{\prime}=\left(\pi_{i_{1}}, \ldots, \pi_{i_{q}}\right)$.

If $x \notin L$, then consider any proof $\left(\pi, \pi^{\prime}\right)$. We know by assumption that for any π, V would reject π with probability at least ε (i.e. over its random choices of i_{1}, \ldots, i_{q}, V would reject $\left(\pi_{i_{1}}, \ldots, \pi_{i_{q}}\right)$ with probability at least ε). When V^{\prime} performs its query, its indices i_{1}, \ldots, i_{q} are chosen according to the same probability distribution, and thus with probability at least ε, this choice would lead to proof probes which V would reject. Then there are two scenarios: (1) either $\pi_{\left(i_{1}, \ldots, i_{q}\right)}^{\prime}=\left(\pi_{i_{1}}, \ldots, \pi_{i_{q}}\right)$, or (2) they are not equal. In the first case, V^{\prime} would reject. In the second case, it would reject with probability at least $1 / q$, since we check consistency with $\pi_{i j}$ for a random j. Thus V^{\prime} rejects with probability at least ε / q, as desired.

Note that the previous exercise, together with the PCP theorem, implies that for some constant q,

$$
\mathbf{N P} \subseteq \mathbf{P C P}_{1,1 / 2}(O(\log n), q) \subseteq \mathbf{P C P}_{1,1-1 /(2 q)}^{\{0,1\}^{q}}(O(\log n), 2)
$$

Raz's parallel repetition theorem allows us to decrease the soundness exponentially in t, by asking t questions in parallel. Specifically, Raz's parallel repetition theorem implies

$$
\forall \rho \in(0,1), \exists c_{\rho} \in(0, \rho), \mathbf{P C P}_{1, \rho}^{\Sigma}(r(n), 2) \subseteq \mathbf{P C P}_{1, c_{\rho}^{t}}^{\Sigma^{t}}(t \cdot r(n), 2)
$$

Thus by taking $t=O(\log (1 / \varepsilon))$ we have altogether

$$
\forall \varepsilon>0, \exists \Sigma(|\Sigma| \leq \operatorname{poly}(1 / \varepsilon)) \text { s.t. } \mathbf{N P} \subseteq \mathbf{P C P}_{1, \varepsilon}^{\Sigma}(O(\log n \cdot \log (1 / \varepsilon)), 2)
$$

