
CS 125 Section #6 Finite automata October 18, 2016

1 More finite deterministic automata

Exercise. Consider the following game with two players: Repeatedly flip a coin. On heads, player 1 gets
a point. On tails, player 2 gets a point. A player wins (and the game ends) as soon as they are ahead by
two points. Draw a DFA that recognizes the language of strings (with alphabet {H,T}) which represent a
possible series of flips in which player 1 wins.

Solution.
Here’s a picture of the DFA:
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We claim that whenever the DFA is in state q0, we have a tie so far; whenever the DFA is in state q1,
player 1 is one point ahead; whenever the DFA is in state q3, player 2 is one point ahead; whenever the
DFA is in state q2, player 2 is two points ahead, and whenever in state q4, either player 2 is 2 points ahead
or the string does not represent a valid sequence of flips (e.g. the game should have ended, but the DFA
still has more input to read).

The proof is by induction on the length of the string: it is clearly true for strings of length 1 (see the
picture!); assume it’s true for a string of length k, and then take any string s of length k + 1. Then, it is
not difficult to check that, regardless of the last character of s, the transitions work as desired.

Exercise. Show that a DFA with n states accepts an infinite language if and only if it accepts some string
of length at least n.

Solution.
One direction is clear. For the other, observe that if an n-state DFA accepts a string w of length m ≥ n,
then some state q is visited twice when w = w1 . . . wm is processed. Let i, j be such that we first visit q
after reading wi, and we visit q for the second time after reading wj . Clearly j > i, and (by determinism!),
w1 . . . wi(wi+1 . . . wj)

kwj+1 . . . wm is also in the language. (Pictorially, this means we keep taking the cycle
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from q to itself as many times as we want.) Hence there are arbitrarily many words accepted by the DFA.

This is also known as the Pumpkin lemma.1 Happy Halloween!

2 More Myhill-Nerode

Recall the statement of the Myhill-Nerode theorem from class:

Theorem 1 (Myhill-Nerode).
A language L ⊂ Σ∗ is regular if and only if there are only finitely many equivalence classes under the
following relation ∼L on Σ∗:

x ∼L y ⇐⇒ ∀z ∈ Σ∗ : xz ∈ L ⇐⇒ yz ∈ L.

Moreover, the minimum number of states in a DFA for L is exactly the number of such equivalence classes.

Proof. ( =⇒ ) Suppose L is regular. Then there is a DFA M that recognizes L, and for each x ∈ Σ∗ there
is a state qx such that on input x, M ends at state qx. Then, define a relation ∼M on Σ∗ by2

x ∼M y ⇐⇒ qx = qy

Clearly,
x ∼M y =⇒ (∀z ∈ Σ∗ : xz ∈ L ⇐⇒ yz ∈ L) ⇐⇒ x ∼L y.

It follows that each equivalence class of ∼M is contained entirely in some equivalence class of ∼L, and
hence each equivalence class of ∼L is a union of several equivalence classes of ∼M . Thus, as there are
finitely many of the latter, there must be finitely many of the former.

(⇐= ) In the lecture notes!

Exercise. For each of the following languages, determine whether the language is regular or non-regular,
and prove your answer:

1. {anban | n ≥ 1}.

2. {a2n | n ≥ 1}∗

3. {anbambam+n | m,n ≥ 0}

Solution. 1. We apply the Myhill-Nerode theorem: observe that in the infinite set of strings {anb | n ≥
1}, no two different ones are equivalent under ∼L, as for m 6= n, we have anban ∈ L but amban /∈ L.

2. This is actually regular! Observe that any string in the language must be of the form a2k for some
k ≥ 1, and conversely, a2k = (a2)k is in the language.

3. This is essentially saying that DFAs can’t do addition (which shouldn’t be surprising). We again
apply Myhill-Nerode, by observing that the set {anba | n ≥ 0} gives a set of pairwise inequivalent
words under ∼L.

1Er... did we say pumpkin? We meant pumping :)
2Especially if you are unfamiliar with equivalence relations, it is work checking that ∼M satisfies the conditions for one.
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3 Closure properties

On this week’s problem set, you will prove that regular languages are closed under homomorphisms and in-
verse homomorphisms. How might we go about showing closure properties under other natural operations,
such as union, intersection, and set difference?

Exercise. Prove that the complement of a regular language is also regular.

Solution.
We can take the DFA for the language, and set Fcomplement = Q − Foriginal. Then, we see that this new
DFA accepts a word if and only if the original one did not.

3.1 The product construction.

The product construction is a way to combine two DFAs into a single one that keeps track of both
computations simultaneously and independently. Simply, it is a formal implementation of what you would
do if you had to run two DFAs on the same string, but you could only pass over the word once (i.e., you’re
given the kind of access a single DFA would have to the string).

Given DFAs on the same alphabet M = (Q,Σ, δ, q0, F ),M ′ = (Q′,Σ, δ′, q′0, F
′), we define a new DFA

M ×M ′ whose states are Q× = Q×Q′, with initial state (q0, q
′
0), and transition function δ×((q, q′), σ) =

(δ(q, σ), δ′(q′, σ)) (and let’s leave the set of final states unspecified for now).

Then an easy induction shows that

Lemma 1.
On input w, if M,M ′ are in states qi, q

′
i after reading the first i symbols, M ×M ′ is in state (qi, q

′
i).

Getting the above statement was our initial motivation for coming up with the product construction, and
it shows us how to construct DFAs that recognize L(M) ∪ L(M ′) and L(M) ∩ L(M ′).

3.2 Closure under union, intersection, and difference

Exercise. How does the product construction help us establish closure under union, intersection, and
difference?

Solution.
We already did most of the work in the previous section! Now we just need to set the final states of M×M ′
in the appropriate way; for this, we carry over the set operations ∪,∩,− on an element-by-element basis
on the final states of M,M ′. So, if we let the final states of M ×M ′ be

F× = {(q, q′) | q ∈ F and q′ ∈ F ′},

it will recognize L(M) ∩ L(M ′); and if we let

F× = {(q, q′) | q ∈ F or q′ ∈ F ′},
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it will recognize L(M) ∪ L(M ′). Similarly, for the difference L(M)− L(M ′) we can set

F× = {(q, q′) | q ∈ F and q′ /∈ F ′}.

Alternatively, note that L(M)−L(M ′) = L(M)∩L(M ′), where L(M ′) denotes the complement of L(M ′).
Then, because regular languages are closed under intersection and complement, we see that they are also
closed under difference.

3.3 Concatenation and Kleene star

When you think about it for a while, for these closure properties, it is more convenient to use the NFA
model, because we intuitively want to make ε transitions. Indeed, if you go back to the previous problem,
you can find a fairly straightforward NFA construction for the union of two regular languages.

Exercise. How would you make an NFA that recognizes the concatenation of the languages L(N), L(N ′)
for two NFAs N,N ′?

Solution.
Here’s how to obtain the NFA for concatenation: put the two NFAs N,N ′ side by side, and draw ε
transitions from each final state of N to the initial state of N ′; let the set of final states be the set of final
states of N ′.

Clearly, any string in L(N) · L(N ′) can be accepted; conversely, if a string is accepted, it must take one
of the ε transitions we added; this gives us a way to break it into two parts, such that the first part is in
L(N) and the second in L(N ′).

Exercise. How would you make an NFA that recognizes the Kleene star of the language L(N), for an NFA
N?

Solution.
One idea that comes to mind is to put ε-transitions from each final state of N to the initial state. An issue
is that ε ∈ (L(N))∗, while it might not be true that ε ∈ L(N). To fix this, add a new initial state qs which
is also final, and connect it to the initial state of N via an ε transition.

As above, it’s easy to see that any string in L(N)∗ has an accepting path, and conversely, if there is an
accepting path, the occasions on which we use the ε transitions we added give us a way to break the input
in parts, each of which is in L(N).

Exercise. Let L be the language of all strings over the English alphabet that contain exactly one of the
strings ‘alan’, ‘mathison’, ‘turing’. Is L regular?

Solution.
Yes. There is a way to come up with a DFA for L from first principles, but it’s a little messy. Here’s a
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cleaner solution using closure properties. Let Lalan = Σ∗ · {alan} · Σ∗, i.e. the language of strings that
contain ‘alan’ as a substring. Define Lmathison, Lturing similarly. Now let

L′ = Σ∗ − (Lalan ∪ Lmathison ∪ Lturing)

Then L is the language of strings that don’t contain any of ‘alan’, ‘mathison’, ‘turing’ as substrings. Then

L = (L′ · {alan} · L′) ∪ (L′ · {mathison} · L′) ∪ (L′ · {turing} · L′)

is regular by the closure properties we established above.

4 A word on reductions

Recall:
Definition 2.
We say a language L1 polynomial-time mapping reduces to a language L2, written as L1 ≤P L2, iff
there is a polynomial-time computable function f : Σ∗1 → Σ∗2 such that for all x ∈ Σ∗1, x ∈ L1 ⇐⇒ f(x) ∈
L2.

People get the direction wrong all the time, and that’s fine (as long as they get it right in the end!). Here’s
one way to get it wrong less often: A ≤P B can be intuitively interpreted by replacing A and B with
‘hardness of A’ and ‘hardness of B’; thus, the ‘inequality’ means that problem B is at least as hard to
solve as problem A.

More generally, a mistake people often make when they’re new to reductions and are attempting to prove
a statement of the form “Show that a problem A is ‘hard’, for some meaning of ‘hard’”, is to start by “We
reduce A to a problem B we know is ‘hard’ in the desired sense”. However, this goes the wrong way; you
need to reduce from a hard problem.

Reducing to a hard problem tells you that if you can solve the hard problem B, that allows you to solve
A; yet, A may still be very easy. In terms of the above notation, this corresponds to A ≤P B. Reducing
from a hard problem means that your original problem allows you to solve the hard problem, and thus
must capture its ‘hardness’ in a sense. In terms of notation, we have A ≥P B.

5 NP-completeness

The motivation behind NP completeness is that we want to capture the ‘essence’ of the class NP. Recall
the two basic definitions:
Definition 3.
A language L is NP-hard if it is ‘harder than everything in NP’; formally,

L is NP-hard ⇐⇒ ∀L′ ∈ NP : L′ ≤P L

Definition 4.
A language L is NP-complete if L ∈ NP and it is NP-hard.

As it turns out, there are many problems that are NP-complete, and that can actually be thought of as
‘the same’ problem when we ignore polynomial-time differences. Thus, the property of being NP-complete
is one way of describing what all these problems are the ‘same as’.
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6 Examples

Exercise. (Longest Path) Prove that the longest path language from HW4, namely

L = {〈G, k〉 : G has a simple path of length at least k}

is NP-complete. (Hint: reduce from Hamiltonian Circuit, which you may assume is NP-complete.)

Solution.
First, it is clear that L ∈ NP, as we can take the path as the certificate and efficiently verify it. Next,
recall that

HamiltonianCircuit = {G | G is an undirected graph with a cycle that touches each vertex exactly once}

is NP-complete by assumption. We first reduce this problem to

HamiltonianPath = {G | G is an undirected graph with a simple path that touches each vertex exactly once } ,

that is, we show that
Lemma 2.
HamiltonianCircuit ≤P HamiltonianPath.

Proof. Given a graph G = (V,E), construct a new graph G′ = (V ′, E′) where for some arbitrary vertex
v ∈ V we have V ′ = V ∪ {v′, s, t} where v′, s, t are new vertices, such that v′ is connected by an edge to all
neighbors of v and to t, and s is connected by an edge to v. Clearly, this is doable in polynomial time.

We claim that G has a Hamiltonian cycle ⇐⇒ G′ has a Hamiltonian path. For the forward direction, we
can make a Hamiltonian path in G′ by starting as s → v, then tracing the Hamiltonian cycle in G, and
when we are supposed to get back to v, we go to v′ instead (which is possible by construction). Then we
finally take v′ → t.

For the reverse direction, given a Hamiltonian path in G′, it must start at s and end at t. Then the portion
of the path between v and v′ can be used to obtain a Hamiltonian cycle in G: simply redirect the edge
going into v′ to the corresponding edge going into v.

A subtle point is that this will fail to be a cycle if it forces us to take the same edge back and forth. This
happens if and only if the Hamiltonian path in G′ has only two edges besides s → v and v′ → t, which
means that G was a single edge. We can handle this case in our reduction explicitly: if G is a single edge,
we let our reduction return two disjoint vertices.

Now reducing from HamiltonianPath to LongestPath is easy: the instance G of the first problem is
equivalent to the instance 〈G,n− 1〉 of the second.

Exercise. (Bounded-Occurrence SAT) Let

CNFk = {〈φ〉 : φ is a satisfiable CNF-formula in which each variable appears at most k times}.

Note that a variable x and its negation x count as two occurrences of the same variable, and that CNF2 is
different from k-SAT (the language consisting of satisfiable CNF-formulas where each clause has k literals).

1. Prove that CNF2 ∈ P.
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2. Prove that CNF3 is NP-complete.

Solution. 1. We use the method of resolution to take the variables out one by one. First, observe that
if the variable x appears only as x or only as ¬x in the formula, or if it appears only once, we can
satisfy whatever clauses it takes part of and thus exclude x and these clauses. On the other hand, if x
and ¬x are both clauses for some variable, we know our formula is not satisfiable. So the interesting
case is when we have x in one clause, c+, and ¬x in another, c−, such that (c+, c−) 6= (x,¬x). Call
the remaining part of the formula r.

We claim that c+ ∧ c− ∧ r is satisfiable if and only if c ∧ r is satisfiable, where c is the disjunction of
all literals from c+ and c− that are not x or ¬x. Indeed, given a satisfying assignment of c+ ∧ c− ∧ r,
some literal in either c+ or c− has to be satisfied, because we can’t have both x and ¬x be satisfied.
Thus, forgetting the assignment of x, we get a satisfying assignment of c ∧ r. Conversely, given a
satisfying assignment of c ∧ r, some literal different from x and ¬x will be satisfied in either c+ or
c−; the other one can be satisfied by assigning x in an appropriate way.

Thus, we have a procedure to decide satisfiability of a CNF2 formula φ efficiently: reduce the number
of variables by the methods described above; if there is no contradiction along the way and you get
to the empty formula, then φ is satisfiable. Otherwise, it is not.

2. We reduce from 3-SAT. Given a 3-CNF formula φ, the idea is to give all variables different names,
and then add additional clauses that force all aliases of a variable to have the same value.

More specifically, say we had a variable x in φ, and we gave all occurrences of x in φ different names
x1, . . . , xk. Then we define a formula

φx = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ . . . ∧ (xk ∨ ¬x1)

The key observation is that a1, . . . , ak is a satisfying assignment of φx iff a1 = . . . = ak. The reverse
direction is immediate. For the forward direction, if a1 = 1, then ak = 1 because of the last clause;
then ak−1 = 1 because of the next-to-last clause, and so on. Similarly, if a1 = 0, then a2 = 0 because
of the first clause, a3 = 1 because of the second clause, and so on.

Now we form the formula ϕ = φ′∧
∧

x φx, where φ′ is the version of φ where all variables have different
names, and the conjunction is over all variables x of φ. The claim is that φ is satisfiable iff ϕ is.

For the forward direction, given a satisfying assignment of φ, we use it to get an assignment of φ′ in
the obvious way; then the φx will all be satisfied as well, as we assign the same value to each alias of
a variable x. For the reverse direction, given a satisfying assignment of ϕ, all aliases of x must have
the same value; thus, the assignment of φ′ gives us a satisfying assignment of φ.

(Oops! I forgot to prove that CNF3 is in NP! That happens all the time. But my job dictates that I
tell you not to forget it, ever! Also, you’ll lose points on problem sets if you do. It’s another CS-Theory
bonding experience, like Turing machines.)

Exercise. Let DoubleSAT = {φ | φ is a boolean formula with at least 2 satisfying assignments}. Show
that DoubleSAT is NP-complete.

Solution.
First, clearly DoubleSAT is in NP, as the two assignments can serve as the certificate. Next, we reduce
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from SAT. Given a boolean formula φ, our reduction returns φ′ = φ∧ (x∨¬x) for a new variable x. Then,
if we have a satisfying assignment of φ, we can come up with two different satisfying assignments of φ′ by
additionally setting x = 0 or x = 1. Conversely, if φ is not satisfiable, then φ′ cannot be either!

Exercise. A subset of the nodes of a graph G is a dominating set if every other node in G is adjacent
to some node in the subset. Show that

DominatingSet = {〈G, k〉 | G has a dominating set of size ≤ k}

is NP-complete.

Solution.
First, clearly DominatingSet is in NP, as we can efficiently verify if a given set is dominating.

For hardness, the idea is to reduce from VertexCover. Given a graph G = (V,E), we form a new graph
G′ = (V ′, E′) where for each edge (u, v) in E, we add a new vertex wuv that is connected to both u and v,
but nothing else.

We claim that G has a vertex cover of size ≤ k iff G′ has a dominating set of size ≤ k.

For the forward direction, observe that a vertex cover C of G directly gives us a dominating set in G′

over the corresponding vertices: for each edge (u, v) ∈ E, one of u, v has to be in S, and thus wuv will be
adjacent to it as needed.

For the reverse direction, a dominating set D in G′ will contain at least one of u, v, wuv for each edge
(u, v) ∈ E. Now we define a subset S ⊂ V using D. First, for all v ∈ V ∩D, we add them to S. Then, if
for some edge (u, v) ∈ E we have that only wuv ∈ D, we add one of u or v to S. Clearly, |S| ≤ |D|, and
moreover, S is a vertex cover of G, as for each edge (u, v) ∈ E, at least one of its endpoints is in S.
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