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• Algorithmic spectral graph theory
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• Property testing (like the BLR linearity test)
• Streaming algorithms
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• Approximation algorithms
• External-memory / cache-oblivious
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Areas of TCS

• Data structures
• Many qualifiers: amortized/worst case, static/dynamic,

persistent/ephemeral, randomized/deterministic
• Tradeoffs (time vs. space, or update vs. query time), upper

and lower bounds

• Complexity Theory
• Concrete complexity (communication complexity, branching

programs, circuits, formulae, . . .)
• Pseudorandomness
• Algebraic complexity
• Proof complexity
• Interactive proof systems

• Computer Science + Economics
• Algorithmic mechanism design
• Algorithmic game theory

• Cryptography and Privacy



Areas of TCS

• Computational Learning Theory

• Coding Theory

• Quantum Computing
• Quantum error-correction
• Quantum communication complexity
• Quantum complexity (“quantum Turing machines”)
• Quantum algorithms



Also “Theory B”



Theory B

Volume A covers models of computation, complexity theory, data
structures, and efficient computation in many recognized
subdisciplines of theoretical computer science. Volume B presents
a choice of material on the theory of automata and rewriting
systems, the foundations of modem programming languages, logics
for program specification and verification, and several chapters on
the theoretic modeling of advanced information processing . . .

Take for example: CS152 (Programming Languages), CS252r
(Adv. Programming Languages)
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Back to Theory A



Areas of TCS

• Algorithms
• Word RAM
• Graph algorithms
• Algorithmic spectral graph theory
• Algorithmic linear algebra
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Word RAM

• Seen in this course: hashing, counting sort, etc.

• Mentioned throughout semester:
• Dynamic predecessor in O(lgw) [van Emde Boas’75]

• Least significant bit in O(1) time [Fredman, Willard’90]

• sorting in O(n
√

lg lg n) time randomized [Han, Thorup’02]

• sorting in O(n lg lg n) time deterministic [Han’02]

• Min spanning tree in O(m + n) deterministic [Fredman, Willard’94]

• Undirected single source shortest paths in O(m + n) [Thorup’99]

• Directed SSSP in O(m + n lg lg n) [Thorup’04]

• . . .

Can see some more instances of “the power of word RAM” in
CS224 and 6.851 (MIT).
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Algorithmic spectral graph theory / linear algebra

• Algorithmic spectral graph theory
• Can say a lot about graphs by looking at eigenvectors and

eigenvalues of matrices.
• A adj. matrix, D = diag(degrees), L = D − A is “Laplacian”
• Laplacian has eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn

• Thm: Undirected graph G has k connected components iff
eigenvalue 0 has multiplicity k.
(in particular, λ2 = 0 iff G disconnected)

• More robust (Cheeger): λ2 small iff G has a sparse cut.
(And if λ2 is small, a sparse cut can be found efficiently.)

• Recently: “higher-order Cheeger”. λk small iff G can be
partitioned into k clusters without many edges crossing the
clusters. [Lee, OveisGharan, Trevisan’12], [Kwok, Lau, Lee, OveisGharan, Trevisan’13], . . .
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Algorithmic spectral graph theory / linear algebra

• Algorithmic linear algebra
• Lx = b in nearly-linear time [Spielman, Teng’04], [Koutis, Miller, Peng’10],

[Koutis, Miller, Peng’11], [Kelner, Orecchia, Sidford, Zhu’13], [Cohen, Kyng, Miller, Pachocki’14],

[Peng, Spielman’14], [Kyng, Lee, Peng, Sachdeva, Spielman’16], [Kyng, Sachdeva’16]

useful subroutine in other problems, like max-flow

• L =
∑

e∈E beb
T
e (for e = (u, v), be = 1u − 1v for u < v)

• For x ∈ {−1, 1}n, 1
4x

TLx is size of cut

• Thm: Can sample only O(n lg n) edges s.t. new L̃ satisfies
xT L̃x ≈ xTLx for all x ∈ {−1, 1}n [Benczúr, Karger’96]

• In fact can get to hold for all x ∈ Rn
[Spielman, Srivastava’08], and

with O(n) edges [Batson, Spielman, Srivastava’09]

• Ideas eventually led to solution of 57-year old “Kadison-Singer”
problem in functional analysis [Marcus, Spielman, Srivastava’15]
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Algorithmic spectral graph theory / linear algebra

• Algorithmic linear algebra
• Also, randomized techniques have been developed to quickly

solve linear algebra problems in statistics.

• Least squares regression: Given X ∈ Rn×d , y ∈ Rn, compute
βLS = argmin ‖Xβ − y‖2

2

• Low-rank approximation: Given A ∈ Rn×d , k ≥ 1, compute
Ak = argminrank(B)≤k ‖A− B‖

• Classical algorithms solve above in time O(nd2)
• Modern techniques can get O(nd lg n), or even

nnz(A) + poly(d); “Sketching as a Tool for Numerical Linear
Algebra” by Woodruff.

See CS229r (Algorithms for Big Data), and 6.S978 and 18.409 (An
Algorithmist’s Toolkit) at MIT.
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Areas of TCS

• Algorithms
• Word RAM
• Graph algorithms
• Algorithmic spectral graph theory
• Algorithmic linear algebra
• Distributed algorithms
• Parallel algorithms
• Property testing (like the BLR linearity test)
• Streaming algorithms
• Online algorithms
• Approximation algorithms
• External-memory / cache-oblivious
• Computational geometry
• Number-theoretic problems (e.g. primality testing)
• . . .



Streaming algorithms

A (fake) search engine query log from Nov 7th:

18:58:02 wikileaks

18:59:12 mlb playoffs

19:07:40 gmail login

19:07:42 gmail

19:07:58 p vs np

19:09:37 aa flight status 1597

19:10:14 halloween costumes

19:10:18 gmail

19:11:28 gmail
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Finding frequent items

Problem: Given stream of items (e.g. words) coming from some
universe U (e.g. English dictionary), report a small list L ⊂ U
containing all “frequent” items

• “frequent” depends on some input parameter ε

• stream with m items, “frequent” means appearing > εm times

• trivial solution: use n = |U| words of memory

• Goal: using � n memory, output small such L (e.g. |L| ≤ 10
ε )
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Harder problem: change detection

A (fake) search engine query log from Nov 7th:

18:58:02 wikileaks

18:59:12 mlb playoffs

19:07:40 gmail login

19:07:42 gmail

19:07:58 p vs np

19:09:37 aa flight status 1597

19:10:14 halloween costumes

19:10:18 gmail

19:11:28 gmail



Harder problem: change detection

A (fake) search engine query log from Nov 8th:

18:58:02 wikileaks

18:59:12 mlb playoffs

19:07:40 how to move to canada

19:07:42 gmail

19:07:58 canada immigration

19:09:37 aa flight status 1597

19:10:14 halloween costumes

19:10:18 gmail

19:11:28 gmail

19:13:42 work visas canada
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Change detection

‘gmail’ popular both days, but big change in popularity for ‘canada’

Goal: use low memory to find small list of items that had large
frequency changes.
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In general
Streaming algorithms: make one pass over a massive dataset
while answering queries, using memory sublinear in the data size.

Other queries: distinct items, moments, graph streaming (e.g.
conncted components in o(m) memory with edge deletions), etc.

Take CS229r (Algorithms for Big Data), CS222 (Algorithms at the
End of the Wire), or “Sublinear Algorithms” at MIT.
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Areas of TCS

• Algorithms
• Word RAM
• Graph algorithms
• Algorithmic spectral graph theory
• Algorithmic linear algebra
• Distributed algorithms
• Parallel algorithms
• Property testing (like the BLR linearity test)
• Streaming algorithms
• Online algorithms
• Approximation algorithms
• External-memory / cache-oblivious
• Computational geometry
• Number-theoretic problems (e.g. primality testing)
• . . .



Online algorithms

• Sequence of irreversible decisions must be made.

• Want to make decisions that aren’t too regrettable in
hindsight.

• Example: (Ski rental problem). You+friends are on a ski trip.
Every morning you vote on whether to keep skiing, or to go
home. You can’t predict future votes.

• Renting skis costs $1 and buying costs $B.

• If knew #days n: if n > B buy, else rent every day.

• But don’t know n, so: rent first B − 1 days, buy on Bth day.

“competitive ratio” (2B − 1)/B < 2.

• e/(e − 1) < 1.582 achievable with randomized algorithm

• Other problems: e.g. caching (which page to evict?)

Take CS224 (Adv. Algorithms), or 6.854 (Adv. Algorithms) at MIT
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Areas of TCS

• Algorithms
• Word RAM
• Graph algorithms
• Algorithmic spectral graph theory
• Algorithmic linear algebra
• Distributed algorithms
• Parallel algorithms
• Property testing (like the BLR linearity test)
• Streaming algorithms
• Online algorithms
• Approximation algorithms
• External-memory / cache-oblivious
• Computational geometry
• Number-theoretic problems (e.g. primality testing)
• . . .



External-memory / cache-oblivious

• Fact: Touching data in memory is ≈ 106-times faster than
seeking to a random location on disk.

• Model: Touching memory is free, but touching disk costs 1.
Minimize cost. Also, sequential read on disk much faster than
seeks, so allow reading B data items per data transfer.

• Memory is bounded size. Disk is infinite.

• Example: for predecessor, rather than use balanced BST,
better to use tree with branching factor Θ(B); “B-tree”.

• Another example: M/B-way mergesort (split into M/B
arrays and recursively sort then merge). Can prove optimal.

• Cache-obliviousness [Frigo, Leiserson, Prokop, Ramachandran’99]: get good
performance but algorithm not allowed to know B,M

See book by Vitter “Algorithms and Data Structures for External
Memory”. CS229r (Algorithms for Big Data), and 6.851 at MIT.
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• Memory is bounded size. Disk is infinite.
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• Data structures
• Many qualifiers: amortized/worst case, static/dynamic,

persistent/ephemeral, randomized/deterministic
• Tradeoffs (time vs. space, or update vs. query time), upper

and lower bounds

• Complexity Theory
• Concrete complexity (communication complexity, branching

programs, circuits, formulae, . . .)
• Pseudorandomness
• Algebraic complexity
• Proof complexity
• Interactive proof systems

• Computer Science + Economics
• Algorithmic mechanism design
• Algorithmic game theory

• Cryptography and Privacy
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Communication complexity

• Simplest setup: Two parties, Alice and Bob.

• Alice gets x ∈ X , Bob gets y ∈ Y
both know f : X × Y → {0, 1} and want to compute f (x , y)

• Allowed to send messages back and forth, but want to
minimize total bits communicated, or number of rounds.

(trivial: lg |X | or lg |Y| comm.)

• Applications: Circuit depth lower bounds
(“Karchmer-Wigderson games”), streaming space lower
bounds, data structure lower bounds (cell probe model,
pset4), . . .

See “Communication complexity” book by Kushilevitz and Nisan.
Also CS229r (Information Theory in Computer Science).
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Pseudorandomness

• Understand how to generate few many “good enough”
random bits from very few truly random bits.

• Example: universal hash family mapping [u] to [m]. Truly
random hash function needs O(u lgm) bits, but random
function from universal family only needs O(lg(um)).

• Is even the small bit of randomness necessary? RP = P?
BPP = P?

• Define L to be class of languages solvable by log-space Turing
machines (space-s(n) means 2 tapes: one is input read-only,
and the second tape is work tape; should use at most first
s(n) cells on work tape).

• RL = L? BPL = L? Best known: BPL ⊆ L3/2
[Saks, Zhou’95]

Take CS225.
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Algebraic circuit complexity

• Circuits, but gates are + and × instead of AND, OR, NOT.

• Want to compute some function Fn → F (F a field, like R).

• [Valiant’79]: VP are functions f of poly(n) degree with poly-size
circuits. VNP are those s.t. for any monomial, there is a
poly-size circuit to compute the coefficient of that monomial.

• Thm. Permanent of a matrix (viewed as a function on n2

numbers) is VNP-complete.

• still unknown if permanent has poly-size circuits

• Determinant(A):
∑

σ∈Sn sgn(σ) ·
∏n

i=1 Ai ,σ(i).

• Permanent(A):
∑

σ∈Sn
∏n

i=1 Ai ,σ(i).
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Proof complexity

• Given axiomatic system, want to understand not just its
power (what can be proven and what can’t), but how difficult
it is to prove some specific theorem in that axiomatic system.

• e.g. minimum length of a proof?

• Recently highly applicable: sums of squares proofs.

• Thm. [Artin’27], [Krivine’64], [Stengle’74]. Let P1, . . . ,Pm be n-variate
polynomials with real coefficients. Then the system of
equations P1(X ) = · · · = Pm(x) = 0 has no solution over Rn

iff there exist polynomials Q1, . . . ,Qm, and some polynomial
S expressible as a sum of squares, s.t. −1 = S +

∑m
i=1 QiPi .

• “Complexity” of proof defined as max degree ` of the QiPi .
Can find low-complexty proofs algorithmically.

Take “Proofs, beliefs and algorithms through the lens of Sum of
Squares” at Harvard/MIT.
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CS+Econ

• Game theory ∩ (Algorithms ∪ Complexity)
• Two-player zero-sum games provably have equillibrium

strategies (“existence”). But the complexity of finding one?
CS125: polynomial time (linear programming)

• Other games? What about non-zero sum? (if I get +x dollars,
you don’t necessarily get −x)

• Nash’50, ’51: Equillibrium exists even if not zero-sum. Proofs
via fixed-point theorems in topology.

• can we find equillibrium efficiently, algorithmically? n players?
“If your laptop can’t find it, then neither can the market.” — Kamal Jain

• Thm. Finding equilibrium even in 2-player games is
PPAD-complete [Goldberg, Daskalakis, Papadimitriou’06], [Cheng, Deng’06]

• PPAD: The class for which the following problem is complete:
given digraph G implicitly s.t. each vertex has at most one
outgoing and at most one incoming edge. Given s ∈ V (G ) and
a description of a poly-time computable function f (v) to
compute successors/predecessors, find a sink. [Papadimitriou’94]
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CS+Econ

• Networks
• Given the Facebook graph how do you choose who to show

ads to in order to make your product go viral?
• Given interaction graph, how do you predict disease spread?

• Algorithmic mechanism design
• Simplest setup: single-item, multiple-bidder auction
• Bidders submit sealed bids, then run a procedure

(“mechanism”) to figure out who gets item and at what price

• Can get more complicated, e.g. Google AdWords (many items
i.e. “keywords”, many bidders, and winners are ranked i.e.
order ads are displayed).

• Businesses: Maximize revenue?
• Government: Maximize “social welfare” (total happiness)?

Take CS134 (Networks), CS284r (Social Data Mining), CS284r (Incentives and

Information in Networks). See more at econcs.seas.harvard.edu. Also

6.891 (Topics in AGT) and 6.853 (Games, Decision, and Computation) at MIT.

econcs.seas.harvard.edu
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Cryptography and Privacy

• Cryptography
• Private-key: Alice+Bob share secret, communicate covertly.
• Public-key: Alice has public key visible to everyone. Anyone

can send her a message, but then only Alice can decrypt it.
(assumption: some problems are computationally hard, and
hackers are computationally bounded)

• Authentication
• Zero-knowledge proofs. Proves a mathematical statement to

you so that you learn nothing more than the truth of the
statement. e.g. graph non-isomorphism.

• Fully homomorphic encryption. Have data but lack
computational power (e.g. Freivalds). Want cloud to compute
f (x1, . . . , xn) for us, but we don’t want to send x1, . . . , xn. Can
we send encrypted data for cloud to compute on, sending back
encrypted answer, never learning the xi? Yes! [Gentry’09]

• Security multiparty computation, Functional encryption,
Private information retrieval . . .
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statement. e.g. graph non-isomorphism.

• Fully homomorphic encryption. Have data but lack
computational power (e.g. Freivalds). Want cloud to compute
f (x1, . . . , xn) for us, but we don’t want to send x1, . . . , xn. Can
we send encrypted data for cloud to compute on, sending back
encrypted answer, never learning the xi? Yes! [Gentry’09]

• Security multiparty computation, Functional encryption,
Private information retrieval . . .
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Cryptography and Privacy

• Privacy
• Sensitive dataset, e.g. hospital records.

• Patients want privacy (and it’s the law). Biostatisticians and
other researchers want to query dataset to learn facts beneficial
to humanity: how many patients with initial complaint X wind
up with complication Y ? Given record of hospital visits so far,
can we predict when patient will next visit hospital? etc.

• Tension between privacy and utility when releasing dataset.
• Differential privacy. Formal statement about when a

randomized mechanism provides privacy, and to what extent:
“neighboring” datasets should have nearly indistinguishable
output distributions [Dwork, McSherry, Nissim, Smith’06]. (Also see recent
book by Cynthia Dwork and Aaron Roth.)

Take CS127 (Intro to Crypto), CS227r (Topics in Crypto+Privacy),
CS229r (Mathematical Approaches to Data Privacy). Also 6.875
(Crypto) and 6.876 (Topics in Crypto) at MIT.
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Areas of TCS

• Computational Learning Theory

• Coding Theory

• Quantum Computing
• Quantum error-correction
• Quantum communication complexity
• Quantum complexity (“quantum Turing machines”)
• Quantum algorithms



Computational Learning Theory

• PAC learning.

• Distribution D over X × Y, and “concept class” F which is
subset of functions from X to Y.

• Given many iid samples from D, “learn” the best f ∈ F
minimizing P(x ,y)∼D(f (x) 6= y) [Valiant’84]

• Proper learning: D always gives (x , f (x)) for some f ∈ F
• Improper: not proper, but still want to find an f ∈ F that is

nearly the best in F
• Statisical query model. Weaker than general PAC learning:

learner only allowed to make statistical queries to D (i.e. can
ask oracle some query φ : X → [−1, 1] and get back an
estimate of Ex∼D φ(x)) [Kearns’98].

CS228 (Computational Learning Theory). Also, book by Kearns and Vazirani.
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Areas of TCS

• Computational Learning Theory

• Coding Theory

• Quantum Computing
• Quantum error-correction
• Quantum communication complexity
• Quantum complexity (“quantum Turing machines”)
• Quantum algorithms



Quantum Computing

• How do quantum effects affect our study of computation in
the physical universe?

• Cryptography
• Quantum money. Bank notes that are guaranteed to be

unforgeable assuming laws of quantum mechanics [Wiesner’83],

several later papers by Scott Aaronson and collaborators.
• Quantum key distribution. Alice+Bob share secret keys via

public communication; eavesdropping adversary Eve learns
nothing [Bennet, Brassard’84], [Ekert’91].
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Quantum Computing

• Complexity
• Quantum circuits. Take input that is n “qubits”, not bits. n

qubits just means a vector x ∈ C2n

with
∑

i |xi |2 = 1 (so
probability distribution over {0, 1}n). Allowed to do unitary
operations on x , i.e. x 7→ Ux for U∗U = UU∗ = I . Can
“measure” and collapse to a basis state given this probability
distribution.

• Basis for classical circuits: AND, OR, NOT. For quantum:
gates apply unitary matrix to input; has been shown a finite
set of gate types suffices to do quantum computation.
(universal set of gates S satisfies ∀n ≥ n0, subgroup generated
by S is dense in group of unitary matrices with determinant 1
operating on n qubits)

• BQP. Languages decided by uniform poly-size quantum
circuits. P ⊆ BPP ⊆ BQP ⊆ PP ⊆ PSPACE.

• Some problems known to be in BQP but unknown if in BPP,
e.g. FACTORING [Shor’94].
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Quantum Computing

• Complexity
• Quantum communication complexity. How much more

efficiently can we solve communication problems when
Alice+Bob share quantumly entangled qubits?

• Quantum search. Clasically need Θ(n) time to find an item
in an unordered database of size n. Quantumly, with the right
query model, Grover’s algorithm only needs O(

√
n) queries

[Grover’96], which is asymptotically optimal [Bennett, Bernstein, Brassad,

Vazirani’97].
• Quantum error-correction. Need to store data being

computed on robustly due to quantum decoherence and faulty
gates. Some physical barriers though (“no-cloning theorem”
[Wootters, Zurek’82], [Dieks’82])
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The End
See more TCS courses at:

• http://toc.seas.harvard.edu/toc-courses
• http://econcs.seas.harvard.edu/teaching
• http://toc.csail.mit.edu/

• Also: AM 106/206 (Applied Algebra), AM 107 (Graph Theory
& Combinatorics), MATH 155r (Combinatorics), ES 250
(Information Theory), MATH 141 (Intro to Mathematical
Logic), Philosophy 144 (Logic & Philosophy)

• Connections to other areas: natural language processing,
circuit design, parsing and compiling, programming languages,
artificial intelligence . . .

And check out our seminars / explore research opportunities!
http://toc.seas.harvard.edu/events-seminars

http://toc.seas.harvard.edu/toc-courses
http://econcs.seas.harvard.edu/teaching
http://toc.csail.mit.edu/
http://toc.seas.harvard.edu/events-seminars
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