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BCI Competition 2003—Data Set Ia: Combining
Gamma-Band Power With Slow Cortical

Potentials to Improve Single-Trial Classification
of Electroencephalographic Signals

Brett D. Mensh*, Justin Werfel, and H. Sebastian Seung

Abstract—In one type of brain-computer interface (BCI), users
self-modulate brain activity as detected by electroencephalog-
raphy (EEG). To infer user intent, EEG signals are classified by
algorithms which typically use only one of the several types of
information available in these signals. One such BCI uses slow
cortical potential (SCP) measures to classify single trials. We
complemented these measures with estimates of high-frequency
(gamma-band) activity, which has been associated with attentional
and intentional states. Using a simple linear classifier, we obtained
significantly greater classification accuracy using both types of
information from the same recording epochs compared to using
SCPs alone.

Index Terms—Multitaper, spectral analysis.

I. INTRODUCTION

THE ability of trained subjects to control the amplitudes
of their own electroencephalographic (EEG) rhythms was

first reported four decades ago [1], [2]. Since then, it has been
widely hypothesized that EEG signals could form the basis of
a brain–computer interface (BCI) in order to provide an alter-
native channel for communication or prosthetic control in se-
verely paralyzed patients. In an EEG-based BCI, electrical sig-
nals recorded from the subject’s scalp are analyzed in real time
to determine the state of the subject’s brain. The results of that
analysis are usually fed back to the subject by a visual display
so that he/she can learn which forms of mentation produce a dis-
criminable EEG signal.

A number of systems have been developed which allow
trained subjects to communicate effectively via BCIs (albeit
slowly—current systems have achieved information transfer
rates of up to about 20 bits per minute in healthy subjects).
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In several of these [3]–[5], the subject learns to modulate the
amplitude of mu (8–12 Hz) or high-beta (18–26 Hz) rhythms
on the scalp just above the motor cortex. Other systems use the
P300 event-related potential [6], [7] or slow cortical potentials
(SCPs) [8], [9] as the BCI control signal.

These BCIs each use a single type of the information present
in the signal to assess the state of the subject’s brain: frequency-
domain information as with mu- and/or beta-rhythm amplitude,
time-domain waveforms such as the P300, or dc potentials in the
form of SCPs. While the use of multiple-type classifiers within
a single BCI has been suggested (frequency-domain as the pri-
mary signal carrier, plus waveform for error detection) [10], no
previous BCI has used multiple information types of the signal
to classify mental state. Here, we describe a case in which com-
bining SCPs with frequency information in one classifier signif-
icantly improves its performance.

Most frequency-based BCIs have focused on the mu and/or
beta rhythms. Oscillations at higher frequencies (gamma-band,
variably defined as 24– Hz) in the human brain have been
widely associated with integrative functions and awareness
[11]–[15]. Motor actions that attenuate the amplitude of the mu
rhythm are simultaneously associated with increases in gamma
amplitudes [16]. These findings suggest that local gamma
synchrony may be related to a variety of controllable mental
states, indicating its possible utility in BCIs.

In order to stimulate improvements in the signal-processing
component of BCIs, “BCI Competition 2003” [17] was recently
held, in which several data sets were made publicly available
for analysis by research groups worldwide. Using the principles
described above and the algorithms described below, our system
produced the highest rate of correct classification among the 15
groups who submitted entries for the data set pertaining to SCPs
in a healthy human subject.

II. METHODS

A. Data Acquisition and Task

All data were acquired from a single healthy subject at the
University of Tuebingen, Germany, as described in [17]. Six
EEG electrodes were all referenced to the vertex electrode
(International 10–20 system) as follows: channels 1 and 2, left
and right mastoids; channels 3–6, anterior (ch. 3, 5) or posterior
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(ch. 4, 6) to position (ch. 3, 4) or (ch. 5, 6). These six
EEG voltages were sampled at 256 Hz.

Trials consisted of three phases: a 1-s rest phase, a 1.5-s cue-
presentation phase, and a 3.5-s feedback phase. At the beginning
of the 1.5-s cue-presentation phase, a visual target indicator ap-
peared either at the top (“cueN” trials, instructing the subject to
strive for cortical Negativity, defined below) or bottom (“cueP”
trials, cortical Positivity) of the screen. The target remained vis-
ible during the subsequent 3.5-s feedback phase, during which
a cursor appeared, whose vertical position indicated the current
level of cortical negativity being generated by the subject.

Cortical negativity was defined as the running average of the
voltages on the two mastoid electrodes (channels 1 and 2) over
the past 0.5 s, relative to the cue-presentation phase. Because
these electrodes are referenced to , positive values correspond
to cortical negativity. Phenomenologically, cortical negativity is
a form of SCP which has been associated with a wide range of
behavioral states pertaining to alertness, anticipation, and prepa-
ration (see [18] for review).

The trials were separated into a training set (268 trials) and a
test set (293 trials), both of which contained EEG data from only
the feedback phase of each trial. The cue labels (class “cueN”
or “cueP”) for the training set were used to tune the parameters
of the classification algorithm, whose performance was subse-
quently assessed on the test set.

B. Analytic Methods

1) Approach: We used MATLAB (release 13) for analysis.
In order to identify features of the data which could discrim-
inate between the two cue classes for each trial, we separated
the training set into cueN trials and cueP trials. For each EEG
channel, we plotted the time-domain and frequency-domain av-
erages across trials for each class. From these plots, a set of can-
didate features was identified for separating the two classes. The
feature set was then screened for statistical significance between
the two classes and for those features which were able to predict
cue labels most accurately, using the classification algorithm de-
scribed in Section IV. This screening identified the four features
of the data set that were ultimately used in our classification
algorithm, two in the time domain and two in the frequency do-
main.

2) SCP Analysis: Time-domain features of the SCPs for
channels 1 and 2 are illustrated in Fig. 1. The mean traces of
the 3.5-s feedback phase reveal an initial transient which is
probably due to the onset of the feedback stimulus. After this
transient, there is a 20–30 mV difference between the cue class
means ( for both channels) throughout the rest of the
trial. Cue-class differences were minimal in the time-domain
for the other four channels. The single-trial traces illustrate the
drift and “noise” of the SCP measurement; intertrial variability
across the entire data set can be seen in Fig. 3. We extracted
two features from each trial (one from each of channels 1 and
2) for use in the classification algorithm by averaging the SCP
voltage from 0.5 to 3.5 s after the beginning of the feedback
phase.

3) Frequency-Domain Analysis: One of the most commonly
used techniques for estimating the spectral power of signals
is the Welch method, which consists of averaging the power

Fig. 1. Slow cortical potential measurements, training set.

Fig. 2. Multitaper spectral power estimates, training set.

spectra produced by sliding-windowed fast Fourier transforms
(FFTs) across the duration of the trial. Our implementation of
the Welch method used a Hamming window of width 1 s.

To assess the effect of spectral-estimation methods on the re-
sults, we also estimated the power spectra using the Thomson
multitaper method [19], [20], using six prolate spheroidal ta-
pers. Proponents of multitaper methods argue that they are able
to treat averaging in a more principled way than other nonpara-
metric methods. The use of this method has been widely adopted
by geophysicists and has been used effectively in neuroscience
[21].

Average multitaper-estimated spectra for the training-set data
in channels 4 and 6 are plotted in Fig. 2 (cue-class differences
were minimal in the frequency-domain for the other four chan-
nels). Spectral power below 24 Hz (which includes the mu band
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Fig. 3. Gamma-band power in channel 4 versus SCP amplitude in channel 1.

commonly used in BCIs) was not significantly different between
the two cue classes. In the band 24–37 Hz, however, mean power
was greater for cueN trials ( for both channels) than
for cueP trials.

For each 0.125-Hz-wide subband, we took the log of the
power and then rescaled across all trials (independent of cue
class) to obtain mean 0 and standard deviation 1. Taking the
mean of this normalized quantity across the subbands from
24–37 Hz provided two more dimensions for classification, one
each for channels 4 and 6.

4) Classification: Each trial was thus represented by four
values (the two SCP means and the two gamma-band powers),
defining a four-dimensional (4-D) feature space in which each
trial is represented by one point. Two of the four dimensions
(SCP mean for channel 1 and normalized gamma-band power
for channel 4) are plotted in Fig. 3. From these plots, the inter-
class differences and trial-to-trial variance can be appreciated.

We separated trials in the 4-D feature space into the two cue
classes using a linear discriminant classifier, in which a normal
density distribution is fit to each cue class, with class means and
pooled covariance estimated from the training set. The class of
a test trial was then predicted based on which distribution had
higher density at the corresponding point in the feature space.

As outlined in the flowchart of Fig. 4, the relative contribu-
tions of the SCP features, frequency-domain features, and spec-
tral-estimation methods were assessed by generating five dis-
tinct classifiers, each trained on a different subset of the data.

Performance of the algorithm on the training set was esti-
mated using a leave-one-out jackknifing method. Test-set per-

Fig. 4. Data flow for construction of the five classifiers. (marked with �).

TABLE I
CLASSIFICATION PERFORMANCE

formance was assessed after the true labels were announced at
the end of the competition.

III. RESULTS

The performance of the classification algorithm using various
subsets of the data is listed in Table I. Using SCP information
alone, the correct label was obtained on 70.9% of the training
set trials, 82.6% on the test set. This improvement may be due
to a subject-training effect, since the test data were taken later
in the recording sessions than the training data (from Fig. 3 it
can be seen that the overlap of classes is decreased in the test
set, compared with the training set).

Gamma-band power alone, computed with either the Welch
or multitaper method, was predictive at a rate much better than
chance ( , sign test). Multitaper spectral estimates
outperformed the Welch periodogram estimates in both data
sets, but this trend did not reach statistical significance (T-test,

for the training set, for the test set).
Using gamma-band power in combination with the SCP mea-

sures produced the best result of all, significantly better than
using SCP alone (T-test, for Welch and multitaper in
the training set, for multitaper in the test set,
(marginally significant) for Welch in the test set).

An additional observation, illustrated in Fig. 3, was the cor-
relation between the SCPs and gamma-band power, which was
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stronger for the training set than for the
test set .

IV. DISCUSSION

We have demonstrated the value of using multiple types of
information for single-trial EEG classification in one subject.
This finding should motivate further exploration of multimodal
classification approaches.

Gamma-band power, because of its correlation with high-
level mental states, seemed promising as a potential control
signal for BCIs. We initially hypothesized that it could be useful
as we entered BCI Competition 2003, despite its lack of repre-
sentation in existing BCIs. Because most frequency-based BCIs
are based on the mu and beta bands, we were surprised that most
of the useful frequency information for classification in this data
set in fact turned out to be in the gamma range, with essentially
none below 24 Hz. Incorporating gamma-band activity and mul-
timodal information into the feedback signal of a BCI can be ac-
complished in real time on modern computers and may provide
the user with a broader set of “mental handles” to grasp as they
are learning to control the interface.

The discriminant analysis used presently is limited by its lin-
earity. More elaborate classifiers such as support vector ma-
chines, while computationally more costly, may yield further
improvements in performance.

A long-term goal of BCI research is to develop systems
which enable the user to control multiple simultaneous degrees
of freedom by self-modulating independent brain signals.
Progress toward this goal has been made in two dimensions
using multiple frequency-domain features [22] and neural
networks [23]. Introducing additional interface dimensions,
however, tends to degrade the accuracy of control over each
one. The exploration of multimodal approaches, in addition
to improving classification accuracy within each control
dimension as in the present report, may also help to identify
independently controllable channels for future BCIs.

REFERENCES

[1] J. Kamiya, “Conditioned discrimination of the EEG alpha rhythm in hu-
mans,” presented at the Western Psychological Assoc. Conf., San Fran-
cisco, CA, 1962.

[2] J. T. Hart, “Autocontrol of EEG alpha,” Psychophysiol., vol. 4, p. 506,
1967.

[3] J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C. A. Forneris, “An
EEG-based brain-computer interface for cursor control,” Electroen-
cephalogr. Clin. Neurophysiol., vol. 78, pp. 252–259, 1991.

[4] C. Guger, H. Ramoser, and G. Pfurtscheller, “Real-time EEG analysis
with subject-specific spatial patterns for a brain-computer interface
(BCI),” IEEE Trans. Rehab. Eng., vol. 8, pp. 447–456, Dec. 2000.

[5] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan, “Brain-computer interfaces for communication and control,”
Clin. Neurophysiol., vol. 113, pp. 767–791, 2002.

[6] L. A. Farwell and E. Donchin, “Talking off the top of your head: Toward
a mental prosthesis utilizing event-related brain potentials,” Electroen-
cephalogr. Clin. Neurophysiol., vol. 70, pp. 510–523, 1988.

[7] E. Donchin, K. M. Spencer, and R. Wijesinghe, “The mental prosthesis:
Assessing the speed of a P300-based brain-computer interface,” IEEE
Trans. Rehab. Eng., vol. 8, pp. 174–179, 2000.

[8] T. Elbert, B. Rockstroh, W. Lutzenberger, and N. Birbaumer,
“Biofeedback of slow cortical potentials,” Electroencephalogr. Clin.
Neurophysiol., vol. 48, pp. 293–301, 1980.

[9] N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter,
J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, “The
thought translation device (TTD) for completely paralyzed patients,”
IEEE Trans. Rehab. Eng., vol. 8, pp. 190–193, June 2000.

[10] G. Schalk, J. R. Wolpaw, D. J. McFarland, and G. Pfurtscheller,
“EEG-based communication: Presence of an error potential,” Clin.
Neurophysiol., vol. 111, pp. 2138–2144, 2000.

[11] J. E. Desmedt and C. Tomberg, “Transient phase-locking of 40 Hz elec-
trical oscillations in prefrontal and parietal human cortex reflects the
process of conscious somatic perception,” Neurosci. Lett., vol. 168, pp.
126–129, 1994.

[12] K. Sauve, “Gamma-band synchronous oscillations: Recent evidence
regarding their functional significance,” Conscious Cogn., vol. 8, pp.
213–224, 1999.

[13] M. G. Knyazeva, D. C. Kiper, V. Y. Vildavski, P. A. Despland, M.
Maeder-Ingvar, and G. M. Innocenti, “Visual stimulus-dependent
changes in interhemispheric EEG coherence in humans,” J. Neuro-
physiol., vol. 82, pp. 3095–3107, 1999.

[14] D. W. Gross and J. Gotman, “Correlation of high-frequency oscillations
with the sleep-wake cycle and cognitive activity in humans,” Neurosci.,
vol. 94, pp. 1005–1018, 1999.

[15] C. Summerfield, A. I. Jack, and A. P. Burgess, “Induced gamma activity
is associated with conscious awareness of pattern masked nouns,” Int. J.
Psychophysiol., vol. 44, pp. 93–100, 2002.

[16] T. Mima, N. Simpkins, T. Oluwatimilehin, and M. Hallett, “Force level
modulates human cortical oscillatory activities,” Neurosci. Lett., vol.
275, pp. 77–80, 1999.

[17] B. Blankertz, K.-R. Mueller, G. Curio, T. M. Vaughan, G. Schalk, J.
R. Wolpaw, A. Schloegl, C. Neuper, G. Pfurtscheller, T. Hinterberger,
M. Schroeder, and N. Birbaumer, “The BCI Competition 2003,” IEEE
Trans. Biomed. Eng., vol. 51, pp. 1044–1051, June 2004.

[18] N. Birbaumer, T. Elbert, A. G. Canavan, and B. Rockstroh, “Slow po-
tentials of the cerebral cortex and behavior,” Physiol. Rev., vol. 70, pp.
1–41, 1990.

[19] D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc.
IEEE, vol. 70, pp. 1055–1096, 1982.

[20] D. B. Percival and A. T. Walden, Spectral Analysis for Phys-
ical Applications: Multitaper and Conventional Univeriate Tech-
niques. Cambridge, U.K.: Cambridge Univ. Press, 1993.

[21] P. P. Mitra and B. Pesaran, “Analysis of dynamic brain imaging data,”
Biophys. J., vol. 76, pp. 691–708, 1999.

[22] J. R. Wolpaw and D. J. McFarland, “Multichannel EEG-based
brain-computer communication,” Electroencephalogr. Clin. Neuro-
physiol., vol. 90, pp. 444–449, 1994.

[23] A. Kostov and M. Polak, “Parallel man-machine training in develop-
ment of EEG-based cursor control,” IEEE Trans. Rehab. Eng., vol. 8,
pp. 203–205, June 2000.

Brett D. Mensh received the B.S.E. degree in
biomedical engineering from Duke University,
Durham, NC, in 1987, and the M.D. and Ph.D
(in neuroscience) degrees from Baylor College of
Medicine, Waco, TX, in 1993.

He is currently on the faculty in the Department of
Physical Medicine and Rehabilitation, Harvard Med-
ical School, Cambridge, MA, and in the Department
of Biological Psychiatry at Columbia University,
New York, with a Research Scientist appointment at
Massachusetts Institute of Technology, Cambridge.

He is currently working on the development of brain-computer interfaces,
neural retraining paradigms for human therapeutics, and improved algorithms
for the analysis of brain imaging data.



1056 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 6, JUNE 2004

Justin Werfel received the A.B. degree in physics
from Princeton University, Princeton, NJ. in June
1999, and the M.S. degree in electrical engineering
and computer science from the Massachusetts
Institute of Technology (MIT), Cambridge, in
September 2001. He is currently working towards
the Ph.D. degree at MIT’s Computer Science &
Artificial Intelligence Laboratory.

His present research interests include evolutionary
biology and swarm engineering.

H. Sebastian Seung received the B.A. and Ph.D.
degrees in physics from Harvard University, Cam-
bridge, MA in 1986 and 1990.

He is currently Professor of Computational
Neuroscience in the Department of Brain and
Cognitive Sciences and the Department of Physics
at the Massachusetts Institute of Technology (MIT),
Cambridge, and Assistant Investigator of the Howard
Hughes Medical Institute. Before joining the MIT
faculty, he was a member of the Theoretical Physics
Department at Bell Laboratories.

He is a Sloan Research Fellow, a Packard Fellow, and a McKnight Scholar.


