
Towards a common comparison framework for
global-to-local programming of self-assembling robotic systems

Justin Werfel and Radhika Nagpal
Harvard University EECS

Self-assembling robotic systems are a class of modular robotic systems composed of many identical
modules that, when mixed randomly, can bind together to assemble into complex shapes [1, 2, 5, 6, 14].
Modules in these systems have dynamic state and local binding rules that drive the overall self-assembly
process. A key question is how to generate module rules such that the system assembles to form a particular
prespecified global shape.

Recently, several groups have demonstrated decentralized, local agent rules for shape formation, not
only in the context of self-assembly but also for self-reconfigurable robots and collective construction by
mobile robots [3, 4, 7–11]. An important feature of these particular examples is that they achieve global-
to-local programming: there is a principled way to derive local rules to achieve a prespecified global shape
from a given class. In some cases, it has also been shown that the derived local rules are provably correct
regardless of variations in the order and timing of agent movements and actions. It may be possible to
apply many of these algorithmic approaches in the context of self-assembling modular robots. However,
it is often difficult to understand and compare the theoretical properties of these global-to-local compilers
because of the different settings—both the assumptions about agents (shape, computation and communica-
tion capability, self-propelling or not, homogeneous or bipartite, physical movement constraints, etc.) and
the global shape descriptions can differ significantly between frameworks. For example, the MakeGraph-
Grammar algorithm by Klavins et al. [7] operates on homogeneous point agents that are randomly mixed,
and generates agent rules that provably will terminate only at the completion of arbitrary desired topologi-
cal graphs. By contrast, the family of CollectiveConstruction algorithms by Werfel et al. [11, 13] operates
on bipartite agents (self-propelled robots and passive square blocks) with potentially restrictive movement
assumptions, and provably produces arbitrary desired geometric structures in 2D without holes. Given such
different settings, it is often difficult to see whether these algorithms can solve the same problems, and if so
how they would compare in measures such as complexity, correctness, and parallelism.

In this workshop talk, we will present some initial steps toward comparing the theoretical properties of
different global-to-local programming approaches in the context of self-assembling robotic systems. We do
so by adapting the approaches to work in a common and generic framework. We will present three aspects
of this problem:

1. We describe a simple, generic model for self-assembling robotic systems.

In this framework, modules are homogenous square tiles that move (either self-propelled or driven by
an external force, potentially at random) in a 2D space. They can attach to other modules along any
of their four faces, and can detach again purposely depending on their interactions. A desired global
shape for the assembly is described as a contiguous 2D grid region. Modules can have state associated
with each of their four faces (“face state”) and/or state associated with the module as a whole (“body

1



Figure 1: Body and face states (shown as letters and colored dots, respectively), and grammars. A rule in
a grammar may involve a free module acquiring new state and orientation information when it binds to the
structure (top), or it may involve state changes among already-bound modules (bottom).

state”); both can change as a result of interactions with other modules (Fig. 1). The module’s local
behavior is described by a geometric graph grammar, which is similar to the graph grammars decribed
in [7] except that both body and face states are used in the interaction rules. This use of face states
allows rulesets to constrain the relative direction of bindings and thus respect geometry in addition
to topology. Rules in these grammars specify initial and final states of the modules involved and any
attachments to be made or broken; when a set of modules is in the specified initial state, the rule
applies and the modules transition to the specified final state. The complexity of the agent program
can be determined by expressing the grammar as a lookup table, and counting the number of unique
labels for the body/face states and the number of distinct rules.

2. We recast two existing algorithmic approaches to work in this common setting: the MakeGraph-
Grammar approach from [7] and the “communicating blocks” variant of the CollectiveConstruction
approach from [11].1

The former requires modifying the MakeGraphGrammar approach to respect geometry; not only must
the generated grammar achieve a prespecified geometry and not simply any topological equivalent,
but it must also avoid defects and intermediate geometric shapes that physically block further progress
(Fig. 2). We present a modified algorithm, MakeGridGrammar, and show that this algorithm can prov-
ably create a restricted class of 2D solid geometric shapes while guaranteeing no defects or deadlock.
MakeGridGrammar works by embedding a tree graph in a principled way into a grid-based repre-
sentation of a desired assembly, and modifying MakeGraphGrammar’s tree-construction algorithm to
take into account face state and enforce geometry. We also modify the CollectiveConstruction ap-
proach to work with homogeneous agents that are not self-propelling. Doing so requires expressing
the shape formation process using explicit grammar rules. We show that the mapping in this case is
quite natural and so the CollectiveAssembly algorithm preserves all the algorithmic guarantees of the
original setting, such as provable construction of 2D solid shapes with no defects or deadlock, and
without requiring modules to travel down narrow tunnels.

3. We compare the two algorithms using several criteria, including: (a) the complexity and scalability of
the generated agent program; (b) the best-case parallelism possible; (c) the likelihood of approaching
best-case performance; (d) the class of shapes for which correctness is provable; (e) the assumptions
about limitations on possible module movement that the algorithm is able to accomodate.

Briefly, the results of these comparisons are as follows.1

1Due to space limitations, our algorithms and analysis for the claims made here do not appear in this extended abstract, but will
be made available for the workshop in a technical report currently in preparation.

2



Figure 2: MakeGridGrammar involves embedding a tree graph into a desired structure. Such an embedding
needs to be done with some care; the choice of tree affects how the structure self-assembles. If the tree is
inappropriately chosen (A), then the structure may end up assembling in such a way that an internal space
becomes entirely blocked off and subparts are physically unable to reach their intended binding sites (B), or
the geometry of subassemblies may otherwise physically prevent them from coming together as necessary
(C). MakeGridGrammar accordingly chooses trees to avoid these problems.

(a) The MakeGridGrammar approach generates agent programs whose complexity scales with struc-
ture size in the same way as CollectiveAssembly (O(n), where n is the number of modules in the
desired assembly). This result suggests that approaches using explicit coordinates (e.g., [3, 8, 9, 11])
are not inherently worse than automatically generated graph grammars.

(b) The MakeGridGrammar approach is able to achieve much greater best-case parallelism. For ex-
ample, for a chain of length n, the best-case parallelism is 2 steps for MakeGridGrammar and O(n)
for CollectiveAssembly. This result stems from the fact that in the former case many subparts can
assemble simultaneously and then merge, whereas the latter approach builds a connected assembly
from a single initiation point. We generalize the theoretical bounds to more complex 2D structures
for both algorithms.

(c) Performance is likely to be closer to the best case for CollectiveAssembly than for MakeGrid-
Grammar. For the latter, where separate subparts assemble simultaneously, it can be a slow process
for large subparts to find each other among a sea of others when needed, and to line up with the
necessary relative locations and orientations. With CollectiveAssembly, free modules remain inter-
changeable until incorporated into their final location in the assembly, so that if the density of free
modules is high, the waiting time for a module to reach an available site is likely to be small.

(d) MakeGridGrammar is provably correct for a smaller class of 2D structures than is Collective-
Assembly (Fig. 3A). The former generates rules that will terminate only at the desired assembly for
assemblies that can be described by a straight backbone with straight side chains; the latter will pro-
duce any assembly without internally enclosed spaces, so long as any “alleys” in the assembly are
wide enough to allow unbound modules to drift down them.

(e) CollectiveAssembly accomodates modules with stricter motion constraints than does MakeGrid-
Grammar. MakeGridGrammar requires that modules and straight chains of modules be able to move
freely down straight narrow tunnels (Fig. 3B), while CollectiveAssembly does not require movement
in such physically restricted spaces. This difference may affect assembly speed and ease of physically
realizing a system using each algorithm.

3



(A) (B)

Figure 3: (A) Examples of the structure classes for which MakeGridGrammar and CollectiveAssembly are
provably correct. MakeGridGrammar (top): structures that can be drawn as straight backbones (green) plus
orthogonal straight side chains (red). CollectiveAssembly (bottom): more general structures without internal
holes.
(B) Examples of sites (red) situated down straight narrow tunnels. MakeGridGrammar requires that modules
and straight chains of modules be able to traverse such tunnels.

We expect that in the future it will be possible to place other global-to-local shape algorithms in this
common framework and compare them along the same axes.

We conclude by discussing three interesting types of shapes that present opportunities not exploited by
either algorithm: (1) shapes with repeated elements, where some parts of the shape can clearly be identified
as similar, and grammars can be made more compact by taking advantage of the repetition; (2) scale-
invariant shapes, where a single grammar is used for a shape whose proportions adapt to the number of
modules; and (3) environment-relative shapes, where some key aspects of the shape are determined by the
environment in which self-assembly happens [12]. In biological organisms, shapes with these properties are
quite common and play a role in both robustness and evolution. For these types of shapes, it may be possible
to generate local agent rules of significantly less complexity, and assemble shapes with considerably more
flexibility. We will illustrate this idea with both biological and artificial examples and motivate why these
types of shapes are an interesting area for future study.

References

[1] Daniel Arbuckle and Aristides Requicha. Active self-assembly. In Proceedings of 2004 IEEE Interna-
tional Conference on Robotics and Automation, pages 896–901, New Orleans, Louisiana, 2004.

[2] J. Bishop, S. Burden, Eric Klavins, R. Kreisberg, W. Malone, N. Napp, and T. Nguyen. Self-organizing
programmable parts. In Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Edmonton, Canada, 2005.

[3] Michael De Rosa, Seth Goldstein, Peter Lee, Jason Campbell, and Padmanabhan Pillai. Scalable shape
sculpting via hole motion: Motion planning in lattice-constrained modular robots. In Proceedings of
2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, May 2006.

[4] Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous self-
reconfiguring robots. In Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Las Vegas, USA, 2003.

[5] Ying Guo, Geoff Poulton, Phil Valencia, and Geoff James. Designing self-assembly for 2-dimensional
building blocks. In ESOA’03 Workshop, Melbourne, Australia, July 2003.

4



[6] Chris Jones and Maja Matarić. From local to global behavior in intelligent self-assembly. In Pro-
ceedings of 2003 IEEE International Conference on Robotics and Automation, pages 721–726, Taipei,
Taiwan, 2003.

[7] Eric Klavins, Robert Ghrist, and David Lipsky. A grammatical approach to self-organizing robotic
systems. IEEE Transactions on Automatic Control, 51(6):949–962, June 2006.

[8] Keith Kotay and Daniela Rus. Generic distributed assembly and repair algorithms for self-
reconfiguring robots. In Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Sendai, Japan, 2004.

[9] Kasper Støy. How to construct dense objects with self-reconfigurable robots. In Proceedings of Euro-
pean Robotics Symposium, pages 27–37, Palermo, Italy, May 2006.

[10] Serguei Vassilvitskii, Mark Yim, and John Suh. A complete, local and parallel reconfiguration al-
gorithm for cube style modular robots. In Proceedings of 2002 IEEE International Conference on
Robotics and Automation, pages 117–122, Washington, DC, USA, 2002.

[11] Justin Werfel, Yaneer Bar-Yam, Daniela Rus, and Radhika Nagpal. Distributed construction by mobile
robots with enhanced building blocks. In Proceedings of 2006 IEEE International Conference on
Robotics and Automation, Orlando, USA, 2006.

[12] Justin Werfel, Donald Ingber, and Radhika Nagpal. Collective construction of environmentally-
adaptive structures. In Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Diego, USA, 2007.

[13] Justin Werfel and Radhika Nagpal. Extended stigmergy in collective construction. IEEE Intelligent
Systems, 21(2):20–28, March-April 2006.

[14] Paul White, K. Kopanski, and Hod Lipson. Stochastic self-reconfigurable cellular robotics. In Pro-
ceedings of 2004 IEEE International Conference on Robotics and Automation, pages 2888–2893, New
Orleans, Louisiana, 2004.

5


