
Distributed Multi-Robot Algorithms for the
TERMES 3D Collective Construction System

Justin Werfel, Kirstin Petersen, and Radhika Nagpal

Abstract— The research goal of collective construction is to
develop systems in which large numbers of autonomous robots
build large-scale structures according to desired specifications.
We present algorithms for TERMES, a multi-robot construction
system inspired by the building activities of termites. The system
takes as input a high-level representation of a desired structure,
and provides rules for an arbitrary number of simple climbing
robots to build that structure, using passive solid building blocks
under conditions of gravity. These rules are decentralized, rely
on local information and implicit coordination, and provably
guarantee correct completion of the target structure. Robots
build staircases of blocks (potentially removable as temporary
scaffolds) that they can climb to build structures much larger
than themselves.

I. INTRODUCTION

In nature, there are many examples where relatively simple
and limited individuals coordinate to self-assemble large-
scale structures. A classic example is termite mound con-
struction [1], [8]. Millimeter-scale insects build meter-scale
mounds, with complicated architecture including features
such as specialized nest chambers, fungus gardens, and
self-regulating ventilation systems. Termite colonies achieve
tremendous complexity, parallelism and robustness, with
individuals that are simple, decentralized, and expendable.
Engineering can draw inspiration from these natural systems
with the research area of collective construction, whose
goal is to develop robot swarm construction systems in
which large numbers of autonomous robots build large-
scale structures according to desired specifications. Such
artificial construction systems have potential for application
in many settings difficult or dangerous for humans, e.g.,
construction of levees, structural support elements, or tempo-
rary shelters in disaster areas; or construction of underwater
or extraterrestrial habitats. Eventually such systems could
increase automation in the construction industry and reduce
accidents, as well as enable automated long-term repair and
maintenance in dynamic environments.

A key challenge to the realization of collective construc-
tion systems is algorithmic: how do robots coordinate to con-
struct a large-scale structure correctly, while retaining a high

This work was supported by the Wyss Institute for Biologically Inspired
Engineering.

J. Werfel is with the Wyss Institute for Biologically Inspired
Engineering, Harvard University, Cambridge, MA 02138, USA
justin.werfel@wyss.harvard.edu

K. Petersen is with the School of Engineering and Applied Sciences
and Wyss Institute, Harvard University, Cambridge, MA 02138, USA
kirstin@eecs.harvard.edu

R. Nagpal is with the School of Engineering and Applied Sciences
and Wyss Institute, Harvard University, Cambridge, MA 02138, USA
rad@eecs.harvard.edu

level of parallelism and simplicity at the single robot level?
Another challenge is physical: how do we design robots and
modular building materials such that robots can construct
structures much larger than themselves in the presence of
gravity? These challenges are not entirely separable, e.g.,
physical constraints have to be taken into account by the
decentralized algorithms.

In this paper we describe an algorithmic approach to 3D
collective construction, as part of a project called TERMES,
which is inspired by the building activities of termites and
other social insects. In this system, autonomous robots build
structures using passive modular building blocks, climbing
over structures that they themselves build. Robots operate
under conditions of gravity, constructing staircases of blocks
as scaffolds to allow them to reach heights and build
structures larger than themselves. Elsewhere we introduced
a hardware system that implements a climbing robot and
blocks it can manipulate to build large structures [5]. Here
we focus on the high-level algorithmic approach, by which
an arbitrary number of such robots can build 3D structures,
using decentralized control and implicit coordination. We
show that this system can autonomously build arbitrary
user-specified structures from a large class of possibilities.
We prove the correctness of the algorithm, and show how
robots can use simple rules to avoid the construction of
intermediate deadlock structures or structures that can no
longer be traversed by the robots.

II. RELATED WORK

Algorithmically, the problem of collective construction is
closely related to lattice-based self-reconfiguring modular
robotic systems and programmed self-assembly [2], [6],
[12]. Typically in such systems all modules are intelligent,
communicating, and mobile. Collective construction can be
thought of as an example of a bipartite self-assembling
modular robot system, where there are two types of “ele-
ments”: robots (self-mobile) and building blocks (passive,
non-mobile, designed for attachment). This bipartite separa-
tion lets blocks be optimized for structural properties and low
expense, and robots be specialized for mobility and reused
for other building projects.

Unfortunately, this separation also increases the complex-
ity of algorithm design beyond that for traditional modular
robots. Robot movement constraints can be quite complex,
especially when carrying blocks, and the use of passive
blocks without embedded electronics implies that informa-
tion needed for coordination in the self-assembly process is
more difficult to propagate through the system. Further, if



Fig. 1. (A) Overview of proposed system. Robots collect blocks from a cache (at left) and use them to build a desired structure starting from a marker
block (with red face). (B) Hardware implementation. (C–G) Examples of structures buildable by the system, demonstrating single-path additive structures
(C,D), splitting (E,F) and merging (F) paths, and a structure requiring a temporary staircase as scaffold (G).

the ultimate goal is to develop human-relevant construction,
then the process must take into account gravity, which
places constraints on final structures as well as intermediate
structures during the building process.

Several groups in the modular robotics community have
worked on decentralized and local algorithmic approaches
to 3D collective construction, e.g., [7], [11], [13]. In each of
these systems, there have been algorithms and compilers de-
signed for creating complex 3D structures. These algorithms
generally involve extensive communication, often among ac-
tive structural elements. Difficulties with the requirements of
physical operation in terrestrial gravity, and other mechanical
issues, have severely limited the ability to translate such
systems into practice.

One notable work deals with gravity by using flying
robots, quad-rotor helicopters capable of building 3D truss
structures, including physical implementation [4]. This sys-
tem relies on precise global localization of its robots at all
times (using Vicon), and on centralized control. Our interest
is in decentralized algorithms for independently controlled
robots with only local information and on-board sensing.

Some algorithmic work in the area of self-assembling
modular robots [3] accounts for gravity by adding a con-
straint that (self-mobile) blocks cannot ”climb” more than
1 block height; this constraint is handled with the use of
staircases to reach higher levels. This is an effective approach
to dealing with gravity, and our TERMES work builds
on this basic concept. However, the algorithmic approach
in [3] depends heavily on inter-block communication for
coordination, which can not be easily translated to collective
construction with passive blocks. Instead we take advantage
of implicit stigmergic principles, following the approach of
our previous work on 2D structures [10] that showed how
coordination can be achieved with passive blocks and robots
that use memory and short-range pattern recognition. We
show that even with such a simple coordination mechanism
and hardware requirement for robots and blocks, it is possible

for a system like TERMES to construct complex structures
and coordinate in a robust and provable manner.

III. MODEL

The design of the TERMES system has been driven by
considerations of robot implementation, cheaply manufac-
turable blocks, and the need to operate in gravity. The system
(Fig. 1) comprises two main types of components: mobile
robots to perform construction, and specialized blocks for
them to use as building material. A unique marker block
(identical to the other blocks in shape but recognizably dis-
tinct from them) is placed in the environment as a landmark
to indicate where construction should begin. Free blocks are
located in a cache, far enough from the structure so as not
to interfere with its progress. Beacons let robots navigate
between the structure and cache.

Robots can move freely in the plane, unloaded or while
carrying one block; they can follow the perimeter of the
structure in progress, and recognize the marker block when
found. A robot can attach a block at an adjacent site at
the same level as itself (e.g., a robot atop a two-block
stack can add a block atop an adjacent two-block stack);
it can climb onto a block one step higher, descend to one
one step lower, or move from one to another at the same
level. While traveling atop a structure, robots can keep track
of their movement and location relative to the structure,
using local sensors (infrared and tilt) to detect features on
blocks and recognize height changes. We assume no global
information such as GPS, and for coordination of robot
actions rely primarily on implicit communication, through
joint manipulation of a common environment.

Blocks are square boxes in shape, with footprint larger
than that of the robots. Markings provide visual feedback to
help robots align with block axes and keep track of move-
ment from one block to the next. Self-aligning connectors
(complementary physical shapes and magnets) achieve pre-
cise alignment and secure attachment. Besides these passive



Fig. 2. Problematic situations for robots that we want to prevent from
occurring. (A) A robot cannot climb onto or down from the central “cliff”.
(B) Attaching a block at the rear center site would be difficult because of
the blocks flanking it. (C) A robot may have trouble carrying a block down
a narrow tunnel like this one.

Fig. 3. Dangers of attaching blocks indiscriminately (side view of linear
structure). If a robot at A adds a block to its left, it creates an unclimbable
cliff; if it adds a block to its right, it creates an undescendable cliff. If a
robot adds a block at B, it becomes impossible to add another at C.

physical features, blocks play no active role in coordinating
robot activities or transferring information.

The desired target structure is specified by the user as a
high-level representation such as an occupancy grid, indicat-
ing which sites (relative to the marker block) are ultimately
intended to be occupied by blocks.

IV. SINGLE-PATH ADDITIVE STRUCTURES

In this section we present methods (first proposed but only
briefly discussed in [5]) by which an arbitrary number of
robots can provably build structures from a given class.

A. Admissible Structures

Due to considerations of physical implementation, the
TERMES hardware, both blocks and robots, restricts the
class of structures the system can build. Block shape and
stacking require the structure to be representable as a 3D
occupancy grid (no curved surfaces, no overlaps like bricks,
etc.). Blocks cannot hang unsupported: every block must be
supported by the ground or a stack of other blocks.

Limitations on how robots can move and manipulate
blocks affect not only the final structures but also the inter-
mediate configurations that can be allowed to occur during
the construction process. Robots cannot climb up or down
more than the height of one block at a time (Fig. 2A). Simple
mobile robots will find it difficult or impossible to fit one
solid block directly between two others (Fig. 2B). Similarly,
it may be very difficult for robots to carry blocks down
narrow corridors (Fig. 2C), particularly if turning corners
is required.

Inappropriate intermediate configurations can lead to dead-
lock. Preventing deadlock in 3D collective construction re-
quires considerable nonlocal information [11], and informa-
tion gathered by robots can easily become stale as other
robots modify the structure. Some coordination mechanism
is therefore required.

Algorithm 1 Robot routine for single-path additive structure.
loop

get new block from cache
go to structure
follow perimeter clockwise until entry point found
climb onto structure
while on structure do

follow structpath
if holding block
and plan specifies block here
and next site along path is at same level
and (just descended from higher level or previous
site is at same level and supposed to be empty) then

move to next site along structpath
attach block at site just vacated

One approach that can provide effective coordination is
to specify a single-file path that all robots can and must
follow while adding blocks to the structure. Doing so brings
several benefits—giving a clear priority scheme that makes it
easy to resolve conflicts, making it easily predictable where
blocks are already present, reducing interference between
robots—without greatly limiting the number of robots that
can be present on the structure at once, and so preserving
considerable opportunity for parallelism.

In this section we limit admissible structures to those for
which such a path can be found. Let Π be the 2D projection
of the desired structure in the ground plane, with each site
marked with the height of the stack of blocks at that site
(as in Fig. 5A). The class of admissible structures, then,
is those for which a nonbranching path P can be drawn
such that: (1) its entry and exit point lie along the structure
perimeter; (2) it visits each site in Π exactly once; (3) the
stack height changes by not more than 1 from one site to the
next along P ; (4) no site on P is flanked on opposite sides
by two previously visited sites; (5) no site on P is flanked
on opposite sides by two sites whose desired stack heights
are more than 2 blocks higher than its own. Conditions 4
and 5 avoid the conflicts described in Fig. 2.

A simple offline compiler takes an input structure specified
as a 3D occupancy grid, and finds a path P satisfying
these constraints or determines that no such path exists. It
is sufficient to consider in turn each height-1 site along the
structure perimeter as a potential starting point, and perform
a depth-first search for a P that satisfies the requirements
above. The compiler returns a “structpath” representation,
consisting of P plus the desired stack height at each site,
which is used by the algorithm presented next.

B. Algorithm

Attaching blocks without restriction at any sites eventually
meant to be occupied will quickly lead to problems (Fig. 3).
A partial ordering on block attachment must be imposed in
order to prevent deadlock.

Theorem: Alg. 1 [5] guarantees completion of a target
structure, working from a structpath as described above.



Proof: Start by assuming an unfolded path (no turns) for
clarity. For Alg. 1 to guarantee producing the target structure,
several things must be shown: (1) robots will not create
unclimbable or undescendable cliffs (Fig. 3A); (2) robots
will not create unfillable gaps (Fig. 3B); (3) deadlocks cannot
occur, where physically reachable sites remain where blocks
should be attached but the rules forbid attachment; (4) two
robots cannot attach blocks at mutually conflicting sites.

(1) Unclimbable/undescendable towers are not possible
because that would involve attaching a block at a location
where the next or previous site along the path is at a lower
level, forbidden by Alg. 1.

(2) Unfillable gaps will not occur because that would
involve attaching a block at a site following an empty site
meant to be occupied, not permitted by Alg. 1.

(3) Proof by contradiction. Assume that deadlock has
occurred in a structure built legally according to Alg. 1. Then
for each remaining site1 where attachment is desired, one of
the following must be true in order for Alg. 1 to forbid it:
(a) a block is present at (X+1,Z)—impossible because Alg.
1 would not have permitted that block to be attached, since
(X,Z) is supposed to be occupied but is empty; (b) no block
is present at (X+1,Z-1); (c) no block is present at (X-1,Z-1);
(d) (X-1,Z-1) is occupied, and (X-1,Z) is empty and supposed
to be occupied, in which case we apply the whole argument
recursively to (X-1,Z) instead (must terminate for a finite
structure). Cases (b) and (c) break down into subcases:

(3b) Either there is supposed to be no block at (X+1,Z-1),
in which case the target structure would be illegal (involving
an undescendable cliff); or there is supposed to be a block
there and it is legal to attach it there, a contradiction (this
is not deadlock after all); or there is supposed to be a block
there and it is illegal to attach it, in which case we apply this
whole argument recursively to that site instead (the argument
must terminate since the structure must reach the ground
eventually). Case (3c) resolves analogously.

(4) Multiple robots cannot cause problems: the conditions
of Alg. 1 are local, so the actions of more distant robots
(beyond the safe following distance they maintain along the
single-file path, see below) can have no effect on whether
those local checks are satisfied.

Folding up the linear path does not affect this argument.
The only potential new difficulties it could introduce are the
need to put a block directly between two others at right and
left, or the need to carry blocks down narrow tunnels, which
are prevented by conditions 4 and 5 on P above. 2

This approach only involves adding blocks to the structure;
once attached, they never need to be removed. Robots bring
blocks to the structure, climb onto the marker block at the
entry point of the path, and follow the path until climbing
back off the structure, attaching the block they carry at the
first available opportunity. Robots are not required to directly
communicate with other robots at any time.

This routine leads to the growth of the structure as a rising

1Identify this site by its coordinates (X,Z), where the x-axis runs along
the path direction and the z-axis runs vertically.

Fig. 4. Side view of a linear structure in which blocks will be added in
the order shown as robots enter from the left and leave to the right.

and falling staircase along the specified path. Fig. 4 shows the
order in which blocks will be added for a sample structure.

C. Resolving Conflicts with Multiple Robots

Multi-robot systems need to be able to handle encounters
when two robots meet, resolve conflicts when two want
to take conflicting actions, and so on. In the construction
scenario, another concern is indirect conflicts that result
in deadlock when two robots attach blocks at mutually
conflicting sites.

The use of an effectively 1D path makes it straightforward
to resolve many of these issues, by allowing unambiguous
priorities associated with robots. Robots follow a single-
file line on and around the structure; in general, the farther
along the sequence of [fetch block]-[return to structure]-
[follow perimeter]-[follow structpath] a robot is, the higher
its priority. In an encounter, a lower-priority robot waits for
the higher-priority one to move on and make room. For
instance, a robot approaching the perimeter, encountering
one already following the perimeter, should wait until the
latter has passed.

In this way, in principle any number of robots can fol-
low Alg. 1 and expect to successfully complete the target
structure, always yielding to robots ahead of them. The 1D
path provides effective serialization of attachments, and the
algorithm prevents indirect conflicts.

D. Time to Completion

We can characterize the time required to build a structure
of N blocks. Depending on the shape of the structure, the
corresponding path will be of length d2

√
N−1e at minimum

and N at maximum. Suppose it takes time L to fetch a new
block and return to the structure with it, and one time step to
move one space along the path or attach a block. Then one
robot acting alone will take time between O(N(

√
N + L))

and O(N(N + L)) to build the full structure.
Multiple robots can take advantage of parallelism to

decrease construction time. In the extreme case—N robots
well-behaved enough to avoid all interference—a continu-
ous line of robots with blocks will move along the path,
constantly adding blocks to the current end of the structure.
Such a case will require only O(N + L) time to complete
the structure.

In general, a case between the one-robot and N -
noninterfering-robots extremes is expected, with some robots
fetching blocks from the cache while others add them to
the structure, thus achieving some speedup through this
parallelism.



Fig. 5. (A) Compiled path for the structure shown in Fig. 1C. (B–E) Snapshots from a simulation of five robots autonomously building the structure.

V. BRANCHING AND MERGING PATHS

Not all structures can be described with single paths. By
allowing a path to split and rejoin itself, we can build a larger
class of structures (e.g., Figs. 1E,F and 6A,B).

When a robot reaches a site where the path splits, it picks
a branch at random to continue down. We allow multiple
exit points. When two branches merge, they must enter the
merge site from orthogonal directions, not from opposite
sides; otherwise the merge site would require adding a block
directly between two others.

The conditions in the inner if statement in Alg. 1 must be
changed slightly to handle branching paths. When attaching
a block at a split point, the “next site along path...” condition
must apply to all outgoing branches; similarly, when attach-
ing at a merge point, the “just descended... or previous site...”
check must apply to the previous site from all incoming
branches. Additionally, two robots approaching a merge
point from different branches will need to establish right-of-
way (with explicit communication or implicit conventions,
like drivers at intersections), since there is no longer an
unambiguous line-leader once the path is not 1D.

The offline structpath compiler must be modified non-
trivially to generate branching paths. In addition to the
search becoming more complicated because of the greater
space of possible paths, it is possible for construction along
adjacent parallel branches to lead to a block needing to be
attached directly between two others, if the order of robot
actions happens to be unlucky (Fig. 6C). The compiler should
recognize such possibilities and reject them if an alternative
exists. Compiler design is left to future work; in this paper we
have designed structpaths for branching structures by hand.

VI. TEMPORARY STAIRCASES

Another way to extend the class of buildable structures
arises if robots can remove blocks as well as adding them.
In this case, robots can build structures that have sections
unreachable by any path in the final structure (e.g., tall towers
with no way of climbing to the top), by building auxiliary
staircases as scaffolds that give access to the necessary level
and are then removed when the structure is completed [3].
Figure 7 gives an example.

Staircases are built in adjacent pairs forming a two-lane
highway, so that robots can go up one lane and down
the other (Fig. 7B). Robots first build the full structure
with staircase. Once the structure is finished, they switch
to following a new path that includes only the staircase
and not the completed structure, and use a new algorithm
(Alg. 2) that gradually removes the staircase. The staircase

Fig. 6. Structpaths for branching structures. Split sites are marked in green,
merge sites in blue. (A,B) Structpaths for the structures shown in Fig. 1E
and 1F. (C) Potential problem with adjacent parallel branches: if the top
and bottom rows happen to be built first, completing the middle row later
will require attaching blocks directly between two others.

is removed layer by layer from the top down, with each layer
being peeled off from the end of the path back toward the
start. A robot switches from additive construction to staircase
removal when it reaches the end of the completed structure
while still holding a block, or when it reaches the point where
the staircase-only path splits from the main structure path and
finds an unclimbable cliff in the latter direction (indicating
that other robots have already started disassembly).

The user input specifies which part of the target structure
is permanent and which is the staircase to be removed.
The compiler then outputs two structpaths: (1) a single
unbroken path that runs up one staircase, visits every site
in the target structure exactly once, and descends a second
staircase running immediately adjacent to the first; and (2)
a staircase-only path that goes up the entry staircase and
immediately down the exit one (Fig. 7B). A future version
of the compiler could take only the final target structure
as input, and automatically find places to add staircases if
otherwise unbuildable [3].

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented an algorithmic approach
to collective construction with climbing robots building
with solid blocks in the presence of gravity. We have
shown that the system can autonomously and provably build
user-specified structures from a large class of possibilities,
using a physically-motivated model based on a hardware



Fig. 7. (A) Compiled paths for the structure shown in Fig. 1C: full path for structure plus staircase in red, staircase-only path in blue. (B–G) Snapshots
of ten robots building the structure and removing the staircase after the tower is complete.

Algorithm 2 Robot algorithm for removing a temporary
staircase.

start by following Alg. 1 (construction)
if reach end of full path without having attached block
or reach site where the full path and staircase-only path
split, and encounter an unclimbable cliff in the direction
of the structure path then

leave structure and discard current block
while staircase not entirely removed do

go to structure
follow perimeter clockwise until entry point found
climb onto structure
while on staircase do

go to next site along staircase-only path
if just descended step and not carrying block then

turn and pick up the block just descended from
discard block

implementation we have presented elsewhere [5]. Robots
are independently controlled, and coordinate their actions
implicitly through manipulation of a shared environment.

One direction for future work is the further development
of the offline compiler, extending it to search for branch-
ing paths and to automatically add temporary staircases to
otherwise unbuildable structures. Extending the approach to
multiple construction stages [3], each involving a temporary
staircase for a different substructure, could increase the set of
buildable structures still further. We are also investigating the
use of stochastic rules to build structures not fully specified
in advance, potentially adapting to preexisting environmental
elements [9].

While the current system is capable of building a large
class of structures, it is limited by the need for each block to
be supported by a stack of others. The use of heterogenous
block shapes [3] (e.g., short beams or larger plates, which

could be realized for instance by creating “unfolding” blocks
that robots can carry in a compressed state) could enable
features like short roofs and overhangs, thus dramatically
increasing the space of interesting structures the system can
create.

REFERENCES

[1] Pierre-Paul Grassé. La reconstruction du nid et les coordinations
inter-individuelles chez Bellicositermes natalensis et Cubitermes sp.
La théorie de la stigmergie: Essai d’interpretation du comportement
des termites constructeurs. Insectes Sociaux, 6:41–81, 1959.

[2] Roderich Groß and Marco Dorigo. Self-assembly at the macroscopic
scale. Proc. IEEE, 96(9):1490–1508, 2008.

[3] Alexander Grushin and James A. Reggia. Automated design of
distributed control rules for the self-assembly of prespecified artificial
structures. Robotics and Autonomous Systems, 56(4):334–359, 2008.

[4] Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. Construction of
cubic structures with quadrotor teams. In Proc. Robotics: Science &
Systems VII, 2011.

[5] Kirstin Petersen, Radhika Nagpal, and Justin Werfel. TERMES: An
autonomous robotic system for three-dimensional collective construc-
tion. In Proc. Robotics: Science & Systems VII, 2011.

[6] Kasper Støy, David Brandt, and David J. Christensen. Self-
Reconfigurable Robots: An Introduction. MIT Press, 2010.

[7] Yuzuru Terada and Satoshi Murata. Automatic modular assembly
system and its distributed control. International Journal of Robotics
Research, 27(3–4):445–462, 2008.

[8] J. Scott Turner. A superorganism’s fuzzy boundaries. Natural History,
111(6):62–67, July-August 2002.

[9] Justin Werfel, Donald Ingber, and Radhika Nagpal. Collective
construction of environmentally-adaptive structures. In Proc. 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007.

[10] Justin Werfel and Radhika Nagpal. Extended stigmergy in collective
construction. IEEE Intelligent Systems, 21(2):20–28, 2006.

[11] Justin Werfel and Radhika Nagpal. Three-dimensional construction
with mobile robots and modular blocks. International Journal of
Robotics Research, 27(3–4):463–479, 2008.

[12] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll,
Hod Lipson, Eric Klavins, and Gregory S. Chirikjian. Modular self-
reconfigurable robot systems: Challenges and opportunities for the
future. IEEE Robotics and Automation Magazine, 14(1):43–52, 2007.

[13] Seung-kook Yun, Mac Schwager, and Daniela Rus. Coordinating con-
struction of truss structures using distributed equal-mass partitioning.
In Proc. 14th International Symposium on Robotics Research, 2009.


