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Abstract

Robots in a swarm construction system need to be able
to find their way to all potential places to add material to
a structure. In two dimensions, a (trivial) procedure exists
for a stateless robot moving along the outside of a struc-
ture, that will let it start at any point, take it to all potential
attachment sites exactly once, and return it to its starting
point, regardless of what part of the structure has already
been built. Here we show that for three-dimensional struc-
tures made from cubic building blocks, where each exposed
face of a block is a potential attachment site, no such proce-
dure exists. Any robot search scheme must then necessarily
involve excess movement and/or increased component com-
plexity (e.g., memory or communication).

1. Introduction

A swarm construction system is one in which a large, un-
specified number of autonomous robots collectively build
a structure according to some set of user specifications.
This framework belongs to the class of self-organizing sys-
tems, engineered in such a way that the independent actions
of many simple interacting components produce a desired
high-level result. In this paper we prove a geometric re-
sult about structures made from cubic building units, which
implies for three-dimensional systems that efficiency and
simplicity are not simultaneously attainable.

Swarm systems might one day be used for construction
in settings difficult or dangerous for humans, e.g., build-
ing habitats in extraterrestrial or underwater environments
to await human travelers, or shoring up partially collapsed
structures in disaster areas. Other applications might in-
clude highly flexible fabrication of smaller-scale artifacts,
as in a complementary approach to current rapid prototyp-
ing methods. The swarm approach can potentially provide
many advantages over centralized systems, including paral-
lelism, scalability, and robustness.

The robots’ task in such a system can be broken into two

independent parts:

1. Find all sites where material might potentially be
added (thesearch problem).

2. Determine, for any such site, whether adding material
there is consistent with eventually achieving the struc-
ture desired. This issue comprises both whether ma-
terial should ultimately appear at a site, and whether
adding it there now, given the current state of the par-
tial structure, will later prevent robots from reaching
other sites where material is desired.

In previous work [6–9] we have focused on the second part
of the problem, which depends heavily on such features of
the system as movement constraints of robots and building
material. Here we consider only the first part, the search
problem of finding sites for potential attachment.

We discuss the case where the building material consists
of square or cubic blocks, and robots are able to maneuver
along the surface of the structure [1–9]. To avoid unneces-
sary movement (and associated waste of time and energy),
it is desirable for robots to minimize the number of times
they repeatedly visit sites that they previously visited and
rejected. The ideal path would take a robot to visit each po-
tential attachment site exactly once, starting from any point
on the structure surface. Such a sequence would be a Hamil-
tonian path on a graph where nodes correspond to poten-
tial attachment sites, and edges connect physically adjacent
sites. If the path is static and robots may start anywhere, the
path should be a cycle to ensure that all sites are visited.

For two-dimensional structures, there exists a trivial pro-
cedure robots can follow to take such a path: following the
perimeter of the structure in a given direction, say clock-
wise, will take a robot to each site once and return it to its
starting point (Figure 1). Whether such a procedure exists
for three-dimensional structures is less clear. The “hairy
ball theorem”, which states that there is no vector field tan-
gent to the surface of a sphere which is nonzero everywhere,
suggests that no such cycle exists in a domain where sites
are continuous: a robot following any path will eventually



Figure 1. No matter where a robot starts
along the perimeter of a 2-D structure, it will
visit each potential attachment site exactly
once and return to its starting point (dot-
ted line) if it moves clockwise at every step
(or, equivalently, follows clockwise-pointing
arrows drawn on every block).

reach a point where it must stop (or else return to a previ-
ously visited location) before returning to its origin. How-
ever, when sites are discrete, the theorem does not apply.
For instance, multiple Hamiltonian cycles exist to visit all
the faces of a cube (Figure 2).

Even if such a path exists, the problem remains of a robot
finding it. Some approaches might require very significant
capabilities from the robot in terms of perception, memory,
and/or computation, and may not scale well with structure
size. Other approaches may make use of complex build-
ing material, e.g., blocks with embedded processors and the
ability to communicate [3, 9]. For greatest simplicity and
lowest cost, it would be best if a stateless robot could deter-
mine how to follow the path at any point based only on very
limited local information.

Information left in the environment—the “stigmergy”
often used in swarm systems and inspired by social
insects—can be of great use to simple robots. In particu-
lar, a path could in effect be drawn on the surface of the
structure, telling a robot crawling along the surface which
way to go next. If cues of this sort are static, then adding
any new block to the structure needs to result in an appro-
priate path without requiring an update to any of the rest of
the existing path.

The question of interest, then, is whether a fixed scheme
exists for coding and assembling a set of blocks such that
(1) a Hamiltonian cycle exists for any structure at any stage
of completion, and (2) attaching another block at any site
still gives a Hamiltonian cycle.

For two-dimensional structures of square blocks, such a
scheme is to draw a clockwise-pointing arrow on each face
of each block (Figure 1). A robot whose movement is de-
termined by following these arrows will take a Hamiltonian
path around the perimeter of the structure no matter where
it starts. Attaching a block to the structure at any site in
any orientation (assuming blocks cannot be rotated through
the third dimension, making the arrows point counterclock-

Figure 2. The two possible Hamiltonian cy-
cles on the surface of a cube (unfolded). A
robot following such a cycle will repeatedly
go through the sequence of moves (A) {left,
right, straight } or (B) {left, right }. (A third
possibility is a reflection of the first: {right,
left, straight }.)

wise) will yield a structure with a Hamiltonian cycle.
In the next section, we will show that no such scheme

exists for three-dimensional structures of identical cubic
blocks. As a result, any sufficient approach to the search
problem necessarily must involve repeated visits to poten-
tial attachment sites (as with a random walk), potentially
complex robots (as with a systematic search that maintains
a history of visited sites), and/or communication between
blocks (as with following a dynamic gradient maintained
by the blocks of the structure). Previous work [9] explores
three such approaches and the tradeoffs between them.

2. Three-dimensional analysis

A structure is built starting from a single block. Thus
whatever path is drawn on the surfaces of all blocks must
constitute a Hamiltonian cycle for each block in isolation.
It is easy to show by exhaustion that there are only two such
cycles on a cube, shown in Figure 2.

When connecting a block to a face of an existing struc-
ture, the new block needs to be oriented in such a way that
the arrows on the block are consistent with the arrows on
the structure. The head of every arrow on the structure that
points the way onto the block should point to the tail of
an arrow on the block, and vice versa (Figure 3), in order
for the paths represented by arrows to be continuous every-
where. Otherwise, a path will be broken; two arrows will
point to the same face, and some face will have no arrows
pointing to it, inconsistent with a Hamiltonian cycle.

The unique way to ensure matching up two blocks and
their arrows in this way is to have identical arrows on the
faces that are brought into contact, and orient them head-to-
tail. With this rule, the arrow that led into the joined face on
one block will lead into the arrow that led out of the joined
face on the other block.

In section 2.1 we show that for path A in Figure 2, this
rule cannot in general be followed to allow a new block to
be attached to a structure consistent with all arrows already



Figure 3. An example of attaching two blocks
such that their arrows are consistent. The
faces brought into contact each have left ar-
rows, in opposite orientations. The result-
ing structure has a single Hamiltonian cycle
drawn on its surface.

Figure 4. Two views of an example structure
built of cubes encoded with path A, where
there is no way to attach a fourth cube at the
corner site consistent with both of its neigh-
bors.

present. In section 2.2 we show that for path B, a new block
can always be added in this way, but the result is not always
a single Hamiltonian cycle. Therefore there is no way to
encode static cubes such that they can be used to build a
structure where, at every stage of completion, a stateless
robot moving along the surface can always follow a path
visiting every exposed face exactly once.

2.1. Path A

Figure 4 shows an example demonstrating that path A
of Figure 2 can lead to situations where no cube can be
attached at a site so as to be consistent with all its neigh-
bors. Three blocks have been connected according to the
attachment rule and consistent with their neighbors, and the
arrows on the surface form a Hamiltonian cycle. However,
no block can be attached at the empty site with two neigh-
bors: the two neighboring faces both have straight arrows,
inconsistent with path A. (In fact, there is no way to draw
arrows on a cube such that, if it were attached at that site,
the four-block structure would have a Hamiltonian cycle on
its surface.) Path A, then, cannot in general be used to build
a structure such that a Hamiltonian cycle is present at every
step of construction.

Figure 5. Three views of a cube patterned
with path B. The cube has threefold rotational
symmetry about the axis shown (middle).

2.2. Path B

Coloring left-arrow faces white and right-arrow faces
black, as in Figures 5, 7, and 8, makes several properties
of this path clearer. The three white faces border one vertex
of the cube, with arrows directed outward; the three black
faces border the diagonally opposite vertex, again with ar-
rows directed outward (Figure 5). The block has threefold
rotational symmetry about the axis that passes through these
two vertices. Thus a block in a cubic lattice has exactly
eight possible distinct orientations; the “white” vertex can
be in any of the eight corners.

Because of the attachment rule about matching up ar-
rows, the orientation of one block determines the orientation
of its neighbors, which determine the orientation of their
neighbors, and so on. It is easy to show that all of these ori-
entations are mutually consistent: it will always be possible
to attach a block to a structure so that there are no broken
paths, and the head of every arrow on every face will point
to the tail of an arrow on a neighboring face.

All of space can then be consistently tiled with blocks
marked with path B; the orientation of each is uniquely de-
termined by that of the first. Figure 6 shows how these ori-
entations fit together. An interesting property is that no mat-
ter how the structure is built, any exposed faces in the same
plane will always be the same color (Figure 7).

While it is always possible, using path B, to attach blocks
anywhere so as to be consistent with the existing structure,
the resulting paths are not always Hamiltonian. Adding a
block may end up splitting an existing cycle into separate
cycles (Fig. 8). A robot following such a path would return
to its starting point before visiting all potential attachment
sites. As a result, path B is also unsuitable for building a
structure so as to provide a Hamiltonian cycle at every stage.

3. Conclusion

We have shown that no way of drawing a static path
on identical cubic blocks will let them be assembled into a
structure such that a Hamiltonian cycle, visiting all exposed
faces exactly once, will necessarily exist at every step. Thus



Figure 6. Tiling pattern of consistent block
orientations, projected into any of the three
orthogonal planes. Dashed lines show block
boundaries; arrows show orientation, point-
ing from “black” vertex to “white” vertex (Fig-
ure 5). In three dimensions, arrows have a
component pointing into or out of the plane,
so that eight “black” vertices or eight “white”
vertices come together at a single point.

Figure 7. An example structure showing that,
using path B, exposed faces in the same
plane will all be the same color. (Arrows are
omitted.)

it is in general impossible for stateless robots, acting on the
basis of limited local information, to reliably find all poten-
tial attachment sites on a partially completed structure they
build of passive cubic blocks, without revisiting sites.

A swarm construction system using cubic blocks thus re-
quires greater complexity from its components, greater ex-
penditure of time and energy, or both. Previous work [9]
discussed three possible search schemes and explored the
tradeoffs between them. One scheme is a random walk:
robots simply move at each step to a random neighboring
face. This approach in general results in a very great deal of
unnecessary movement, more so for structures with greater
surface area. A second possibility is a systematic search,
where robots keep track of visited sites and choose their
movement in a principled way to visit unexplored areas.
While this approach can eliminate considerable revisiting
of sites, some repeated movement remains; it also has robot

Figure 8. (Left) A three-block structure built
of cubes encoded with path B, with a Hamil-
tonian cycle. (Right) Adding a fourth block
gives a structure with two continuous but
separate closed paths, one visible on top, the
other winding around the sides and bottom.

memory requirements that increase with the size of the de-
sired structure, and depending on the details of the search,
may restrict the class of structures that can be built. A third
scheme is to embed processors in the building blocks, let
them communicate with physically attached neighbors, and
have them direct robots straight to the nearest available at-
tachment site. This approach requires substantially more
complex blocks, and can call for a very great deal of com-
munication among them, with associated energy costs.

It would be ideal if all these complexities could be
avoided and stateless robots could find their way to all po-
tential attachment sites without repeated movement or com-
munication. However, some such increased complexity is
necessary for any such 3D swarm construction system—
regardless of the nature of the rules dictating where material
may legitimately be attached.
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