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Lecture 9

Lecturer: Madhu Sudan Scribe: Ali Vakilian

In this lecture we explain the Communication Complexity (CC) model introduced by Yao [Yao79]
and motivate the model with some well-studied examples. Furthermore, we define the probabilistic
variant of CC model and at the end describe some the general techniques such as Rank, Discrepancy
and Information theory for proving lower bounds in this model.

1 Basic Concepts and Definitions

What’s the goal in Communication Complexity? Intuitively speaking, the goal of this model
is to study the problems in which two (or more) players each has some input and they want to
compute some pre-specified function f on their inputs. However, each of the players is only aware
of its own input and (usually) does not know much about the other player’s input. The goal is
to give upper/lower bound on the size of message (in bits) they have to communicate in order to
evaluate the function f over their inputs. More precisely, there are two players: Alice and Bob.
Alice has input x and Bob has input y (see Figure 1). Alice and Bob want to compute f(x, y)
together with communicating the fewest possible number of bits (which works for all x, y in the
input domain).

x y

Alice Bob

f (x, y)

Figure 1: Alice has input x and Bob receives input y and the goal is to compute f(x, y).

A more interesting question arises in the probabilistic variant of CC in which we assume that
Alice and Bob are allowed to use randomized protocols and at the end they need to output f(x, y)
correctly with probability (1− ε). In general we consider the following variants in CC.

• Deterministic Communication Complexity: As described above, the protocols of Alice and
Bob are deterministic and at the end they need to compute f(x, y) correctly (no error is
allowed). cc0(f) denotes the minimum number bits that is required for computing f in this
model.

• Private Randomized Communication Complexity: In this model each of the players have
some private random bits and their protocols are randomized (based on their private random
bits) and at the end they must compute f(x, y) correctly with probability 1− ε (probability
is over random bits). Similarly, ccε(f) denotes the minimum number bits that is required for
computing f in this model.

• Public/Shared Randomized Communication Complexity: In this model, in addition to the
private random bits, Alice and Bob are allowed to share some public random bits which are
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independent of their input x, y. As before, Alice and Bob are required to compute f(x, y)
correctly with probability at least 1− ε and their protocol can be randomized on both their
private random bits and shared random bits. Here, Priv-ccε(f) denotes the minimum number
of bits that is required for computing f .

Note that it is straightforward to show that for any function f , cc0(f) ≥ ccε(f) ≥ Priv-ccε(f).

Examples: In the following we compute cc0 of different functions f : {0, 1}n × {0, 1}n → {0, 1}.

• The trivial upper bound we can give for any arbitrary function f is cc0 ≤ n+ 1. Alice sends
x to Bob (n bits). Then Bob computes f(x, y) and send it (1 bit) to Alice. In particular, for
many functions f , this naive approach is the best we can do.

• Parity(x, y) = ⊕ni=1(xi ⊕ yi): Alice sends ⊕ni=1xi to Bob (parity of her bits string which is
a single bit) and then Bob computes Parity(x, y) and return the solution to Alice. Thus
cc0(Parity) ≤ 2.

• EQ(x, y) = 1 if x = y and 0 otherwise: It is known that cc0(EQ) = n+ 1 and in this lecture
we prove that cc0(EQ) ≥ n.

For proving lower bounds in this model, it is crucial to specify the model CC model carefully. Here,
we give a formal description of protocols in Deterministic CC which is due to Yao [Yao79].

Problem) f : {0, 1}n × {0, 1}n → {0, 1, ?} (In many cases we are only interested in computing
f over some parts of the domain and for the rest we do not care about the output of f . Here “?”
denotes the output to the parts we do not care. However, in this lecture we do not work with “?”.)

Solution) Or protocol specifies at each step who speaks and what says. A k-bit protocol Π =
(Π1, · · · ,Πk) can be specified as follows:

• Πi = (zi, fi) where zi ∈ {x, y} and fi(zi, b1, · · · , bi−1) ∈ {0, 1} where bj denote the jth

communicated between Alice and Bob. Let gA and gB be respectively the output function of
Alice and Bob.

– In randomized CC models, zi ∈ {(x,RA, R), (y,RB, R)} where RA, RB and R respec-
tively denote the random bits of Alice, Bob and the shared random bits.

We also need to specify the correctness and efficiency of a given protocol.

Correctness) If ∀i, bi = fi(zi, bi · · · , bi−1) then ∀x, y : gA(x, b1, · · · , bk) = gB(y, b1, · · · , bk) =
f(x, y).

• In randomized CC models, the condition is if ∀i, bi = fi(zi, bi · · · , bi−1) then ∀x, y : Pr[gA(x, b1, · · · , bk)
= gB(y, b1, · · · , bk) = f(x, y)] ≥ 1− ε.

• Another CC model which is widely used in the literature is One-way CC. In this model the
correctness condition is relaxed and we only require Bob to output f(x, y). More precisely,
the correctness in this model is if ∀i, bi = fi(zi, bi · · · , bi−1) then ∀x, y : Pr[gB(y, b1, · · · , bk) =
f(x, y)] ≥ 1− ε.
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Efficiency) is defined as the length of the protocol. Here it is k.

2 Communication Complexity of EQ

In this section we focus on giving the promised lower bound for cc0(EQ) via a matrix representation
of the problem. Any function f (where f : {0, 1}n × {0, 1}n → {0, 1}) can be shown by a 2n × 2n

matrix Mf whose rows correspond to the set of all possible inputs of Alice and columns correspond
to all possible value of y and Mf [xi, yj ] = f(xi, yj).

Definition 1 (Rectangle) A (combinatorial) rectangle in {0, 1}n×{0, 1}n is a subset R ⊆ {0, 1}n×
{0, 1}n such that R = A×B for some A ⊆ {0, 1}n and B ⊆ {0, 1}n.

A useful observation in the matrix view of f in CC model is that at the end of Πi, Mf is
partitioned into a set of rectangles (at the beginning Mf is the only rectangle) and as Alice (Bob)
communicates the next bit each existing rectangle may partition into at most two (combinatorial)
rectangles (be careful about the definition of rectangles) by horizontal (vertical) lines. Let Ri be
the set of the rectangles at the end of Πi. Then for all values of x and y that lie in a rectangle
R ∈ Ri, the set of communicated bits is the same and if the protocol has to output at after Πi, the
output would be the same for all such x, y (see Figure 2). The rectangle for which the output is
the same are called monochromatic rectangles (Figure 2(b)).
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Figure 2: (a) shows the set of communicated bits in each rectangle and (b) is the value of f at
each rectangle.

The transcript of a protocol Π on (x, y) is defined as t(x, y) := (b1, · · · , bk), the set of commu-
nicated bits given (x, y). Then we have the following result which formalizes what we described
above.

Claim 2 For all t ∈ {0, 1}k, there exists R = S × T where S ⊆ {0, 1}n and T ⊆ {0, 1}n such that
t(x, y) = tR ⇐⇒ (x, y) ∈ R.

Proof By induction.

Claim 2 implies that if t(x, y) = t(x′, y′) then t(x′, y) = t(x, y′). Since gA (gB) only depends on
t(x, y) and x (y), correctness condition implies that the output all points in a rectangle of Rk have
value rk ∈ {0, 1}.
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Conclusion) Π = (Π1, · · · ,Πk) partitions Mf into 2k monochromatic rectangles.

Algebraic view of monochromatic rectangles. If the number of monochromatic rectangles
in Mf is 2k (R1, · · · , R2k) then rank(Mf ) is at most 2k. The reason is that we can write Mf

as sum of 2k matrices M1, · · · ,M2k such that Mi[x, y] = 0 if (x, y) /∈ Ri and ri if (x, y) ∈ Ri
where ri is the value of a cell in Ri. It is straightforward to verify that rank(Mi) ≤ 1; hence,
rank(Mf ) is at most 2k. This implies that rank(Mf ) ≤ 2cc0(f) ⇐⇒ cc0(f) ≥ log(rank(Mf )).
This observation is particularly useful in proving lower bounds for many problems in Deterministic
CC. As an application of rank method, we show how to bound the number of required bits of
communication of EQ.

In order to apply rank method, first we need to figure out the matrix representation of EQ.
MEQ = I and it is straightforward to check that the minimum number of required monochromatic
rectangles of any protocol ΠEQ is 2n. Thus any protocol ΠEQ requires at least n bits of communi-
cations.

Theorem 3 ([Yao79]) cc0(EQ) ≥ n.

2.1 Randomized Protocol for EQ

Using the following result from error correcting codes, we can design an efficient protocol for EQ
with randomness.

Theorem 4 There exists a function E : {0, 1}n → {0, 1}n such that ∀xy, E(x) and E(y) disagree
in at least n

10 coordinates.

x y

Alice Bob

i ∈ [n]

E(x)i
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x y

Alice Bob(i, E(x)i)

E(y)i
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Figure 3: (a) shows an efficient protocol for EQ with public randomness and (b) shows the adoption
of the same protocol with private randomness.

Consider the following protocol P for EQ using an error correcting function E.

1. Alice compute E(x) and sends its ith coordinate (which is determined by the public random
bits) to Bob

2. Bob also computes E(y) and sends its ith coordinate to Alice.

3. They accept if their ith coordinates agree.

Remark If we want to work with private randomness, Alice has to communicate the random
index she selected as well (which requires O(log n) bits of communication). In fact, the pro-
tocol P gives the following bounds on communication complexity of EQ: ccε(EQ) = O(1) and
Priv-ccε(O(log n)) where ε = O(1).
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To show the correctness of P with constant probability note that,

• If x = y, Pr[Alice and Bob accept] = 1.

• If x 6= y, Pr[Alice and Bob accept]< 9
10 .

We can decrease the failure probability by repeating the protocol several times.
So far we have proved lower bound on the number of required bits of communication for problems

in Deterministic CC model. However, it is more interesting to obtain lower bounds that rule
out certain bound for randomized protocols as well. The main tool for proving lower bounds of
randomized protocols is via Yao’s principle which is stated as follows. Proving lower bound for the
worst case performance of any randomized protocols solving P is the same as proving lower bound
for the performance of any deterministic protocol P over a random instance. This leads to another
variant of CC which is called Distributional Communication Complexity (see Section 4).

3 Set Disjointness Problem

Another problem in CC which has lots of applications in other area of TCS such as streaming
algorithms is Set Disjointness (DISJ) problem. In DISJn, each of Alice and Bob gets a subset of [n]
and their goal is to determine whether their sets intersect. More precisely, for S ⊆ [n] and T ⊆ [n],
DISJ (S, T ) = 1 if S ∩ T 6= ∅ and 0 otherwise.

Proving lower bounds for the deterministic protocols of DISJn is not so hard, however, a more
challenging problem is to give a lower bound for the randomized protocols of the problem. One of
the seminal results in CC is the following lower bound on ccε(DISJn) which we will see its proof
later in this course.

Theorem 5 ([KS92, Raz92]) ccε(DISJn) ≥ Ω(n).

Theorem 5 has in particular many applications in proving lower bounds for problems in stream-
ing setup. As an example, one of the well-known problems in the streaming setup is the Frequent
Item problem in which given a data stream of items E ⊆ [n]m, the goal is to output the most
frequent item in the stream using the lowest possible memory space. Suppose there exists an al-
gorithm A for Frequent Item that returns the correct answer with probability 1− ε and uses o(n)
space. Then we can come up with the following protocol P for DISJn:

(a) Alice runs A on her inputs, S, (as an stream) and then sends the memory state of A to Bob.

(b) Bob resumes A on his input, T , from the state sent by Alice and sends to her the final output
of A and a bit stating whether Bob has the item or not.

(c) Alice sends a bit to Bob stating whether she has the most frequent item or not.

It is straightforward to check that the described protocol returns 2 iff S and T intersect and 1
otherwise. Thus P solves DISJn with probability at least 1 − ε using o(n) bits of communication
which is a contradiction.

Corollary 6 Any (randomized) streaming algorithm of Frequent Item that with probability at least
1− ε returns a most frequent item requires Ω(n) space.
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4 Distributional Communication Complexity

In this setting we assume that inputs of both Alice and Bob come from a distribution over {0, 1}n:
(x, y) ∼ µ({0, 1}n × {0, 1}n).

Definition 7 (Distributional Communication Complexity) The distributional communication com-
plexity of a function f : [n]2 → {0, 1} over the distribution µ and with success probability at least
1− ε, denoted by ccµ,ε(f), is the cost of the best deterministic protocol that gives the correct answer
on at least (1− ε) fraction of all the inputs, weighted by µ.

For any function f , we have the following relation between the ccε and ccµ,ε.

Proposition 8 If ccε(f) ≤ k, then ccµ,ε(f) ≤ k.

Proof If there exists a randomized protocol Π for function f with expected error at most ε (over
µ and R), then there exists a deterministic protocol Π′ whose expected error is at most ε (over µ).

ER,(x,y)∼µ[Error(f,Π, x, y, R)] ≤ ε⇒ ∃r, s.t. E(x,y)∼µ[Error(f,Π, x, y, R = r)] ≤ ε.

It is usually useful to work with matrix view of Distributional CC.

• f : {0, 1}n × {0, 1}n → {−1, 1}. For convenience, we change 0 to −1 which you see that will
help a lot!

• Mµ,f (x, u) = µ(x, y)f(x, y)

Observation 9
∑

x,y |Mµ,f (x, y)| = 1.

Consider (combinatorial) rectangles in Mf . By definition, RS×T denotes the set of (x, y) such
that x ∈ S and y ∈ T and are all either −1 or 1. Furthermore, we define matrix MS,T as follows:
MS,T [x, y] = 0 if (x, y) /∈ S × T and r otherwise where r ∈ {−1, 1}.

Definition 10 (Discrepancy function) Let f : {0, 1}n×{0, 1}n → {0, 1} be a function and let µ
be a probability distribution on {0, 1}×{0, 1}. For rectangle R in Mf , Discµ,f (R) = |∑(x,y)∈RMµ,f (x, y)|.
Moreover, the discrepancy of f under µ is defined as the maximum discrepancy over all its rectan-
gles, Discµ(f) = maxR∈Rf

Discµ,f (R).

Lemma 11 Error of protocol Π on f is ε iff |R| ·Discµ(f) ≥ 1− 2ε.

Proof Let ε = Error(Π, f). Then, (1 − ε) − ε = Ex,y[µ(x, y) · Pr(returns correctly on(x, y))] −
Ex,y[µ(x, y) · Pr(returns incorrectly on(x, y))] ≤∑

R∈RDiscµ,f (R) ≤ |R| ·Discµ(f).

Lemma 12 If ccµ,ε(f) ≤ k then there exists a rectangle R such that Disc(Mµ,f , R) ≥ 2−k(1− 2ε).

Proof It follows from Lemma 11 and the fact that |R| = 2k.
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4.1 Inner Product Function

In this part, we study the Inner Product(IP) function and prove a lower bound on its communication
complexity with (private) randomness. IP function of two vectors x, y is defined as IP(x, y) =
⊕ni=1(xi ∧ yi).

Using Lemma 12 and following lemma which will be shown in next lecture we obtain a lower
bound on ccε(IP).

Lemma 13 For all R, Disc(Muniform,IP, R) ≤ 2
−n
2 .
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