
CS 229r Information Theory in Computer Science Feb 25, 2016

Lecture 10

Lecturer: Madhu Sudan Scribe: Nathan Manohar

Overview

Today:

1. Wrap Up Inner Product Lower Bound

2. Introduce Information Complexity Lower Bound for Set Disjointness

Review:

1. Communication Complexity (deterministic and probabilistic)

2. Rank Lower Bound (for deterministic)

3. Discrepancy (for randomized)

1 Inner Product (Madhu)

IP(x, y) =

n
∏

i=1

(−1)xi∧yi

and
µ = UNIF({0, 1}n × {0, 1}n)

Mµ,IP = [Mµ,IP (x, y)]x,y

where Mµ,IP (x, y) = 4−n · IP (x, y).
We have that

Disc(M,R) = |
∑

(x,y)

R(x, y) ·M(x, y)|

We define
Disc(M) = max

rectangles R
{Disc(M,R)}

We have that
Disc(M) ≤ (1− ε) · 2−k =⇒ CLε(IP) ≥ k

If we rewrite Disc(M), we can express this as

Disc(M) = max
S,T⊂{0,1}n

|
∑

x∈S,y∈T

M(x, y)|

= max
U,V ∈{0,1}2n

|UT ·M · V |

≤ max
U,V ∈R2n ,||U||2,||V ||2≤2n/2

|UT ·M · V |

= 2nλmax(M)

Mµ1,IP1
=

(

1/4 1/4
1/4 −1/4

)

which has eigenvalues ± 1√
8
. So, the maximum eigenvalue of Mµ,IP is ( 1√

8
)n, so we have that

Disc(M) ≤ 2nλmax(M) = 2n(
1√
8
)n = 2−n/2

10-1



2 Information Complexity (Alex + Minjae)

Outline

1. Set disjointness

2. Information complexity

3. IC ≤ CC

4. choice of distribution

5. ICn ≥ n · IC1

6. IC1 = Ω(1)

Definition 1 (Set Disjointness Problem) Let x, y ∈ {0, 1}n. We define Disj(x, y) =
∨n

i=1(xi ∧ yi). In
particular, we have that

Disj(x, y) =

{

1 if ∃i, xi = yi = 1

0 otherwise

2.1 Notation

f is a function from {0, 1}n × {0, 1}n to {0, 1}. µ is a distribution of {0, 1}n × {0, 1}n. ε is the error
parameter. π is the ε-error protocol for computing f (meaning π computes f correctly on every input with
error probability ≤ ε). π(x, y,R,RA, RB) is the transcript of π with inputs x, y.

Definition 2 Information Cost of π for computing f with respect to µ, ε is defined as

ICπ
µ,ε(f) = I(X,Y ;π|R)

2.2 Ex. 1-bit AND

x, y ∈ {0, 1}. Want to compute f(x, y) = x ∧ y.

Protocol:
δ error, k >> 1

δ . Repeat the following k times.

A → B

{

1 w.p. 1− δ

X w.p. δ

and

B → A

{

1 w.p. 1− δ

Y w.p. δ

If either is 0, output 0. Else, output 1. We see that the probability of error is

(1− δ)k ≤ eδk = ε

The information cost is

ICπ
µ,ε(f) = I(X,Y ;π) = H(X,Y )−H(X,Y |π) ≤ log2 4 = 2

The bound is strictly less than 2 because in the case where x ∧ y = 0, we might only learn that one of the
bits is 0 and be unsure about the other bit.

Lemma 3 ICµ,ε(f) ≤ CCε(f) ∀µ, ε > 0
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Proof CCε(f) = |π∗|, the max length of π. CCε(f) = |π0| ≥ H(π). However, ICµ,ε(f) = I(X,Y ;π) ≤
H(π).

The main theorem we want to show is

Theorem 4 ICµ,f (Disj) = Ω(n)

To prove this, we prove lemmas that roughly state the following

Lemma 5 (Informal) IC(Disjn) ≥ n · IC(Disj1)

Lemma 6 (Informal) IC(Disj1) ≥ Ω(1)

Choice of Distribution:
To prove this, we will make use of the following distribution.

Zi ∼ Unif({0, 1})

If Zi = 0, then Xi = 0 and Yi ∼ Unif({0, 1}). If Zi = 1, then Yi = 0 and Xi ∼ Unif({0, 1}).

(Xi, Yi, Zi) ∼ η

Z = (Z1, . . . , Zn)

(X,Y, Z) ∼ ζ = ηn

Properties of ζ:

1. ∀x, y ∈ Supp(ζ), Disj(x, y) = 0

2. ∀Z ∈ {0, 1}n, X ⊥ Y |Z

3. (Xi, Yi) ⊥ {(Xj , Yj)}j 6=i

Definition 7 (Conditional Information Cost) CICπ
ζ,ε(f) = I(X,Y ;π|Z)

Definition 8 (Conditional Information Complexity) CICζ,ε(f) = minπ{CICπ
ζ,ε(f)}

Lemma 9 CICζ,ε(f) ≤ ICµ,ε(f) where µ = ζ|Z

Proof CICζ,ε(f) = I(X,Y ;π|Z) = H(π|Z)−H(π|X,Y, Z). ICµn,ε(f) = I(X,Y ;π) = H(π)−H(π|X,Y ).
Since H(π|X,Y ) = H(π|X,Y, Z) and H(π) ≥ H(π|Z), the result follows.

Lemma 10 CICn ≥ n · CIC1

We will show the following two results.

1. I(X,Y ;π|Z) ≥ ∑n
i=1 I(Xi, Yi;π|Z)

2. I(Xi, Yi;π|Z) ≥ CICη,ε(Disj1)

Proof (of 1):

I(X,Y ;π|Z) = H(X,Y |Z)−H(X,Y |π, Z)

H(X,Y |Z) =

n
∑

i=1

H(Xi, Yi|Z,X1, Y1, . . . , Xi−1, Yi−1)

=

n
∑

i=1

H(Xi, Yi|Z)

H(X,Y |π, Z) =

n
∑

i=1

H(Xi, Yi|π, Z,X1, Y1, . . . , Xi−1, Yi−1)

I(Xi, Yi;π|Z) = H(Xi, Yi|Z)−H(Xi, Yi|π, Z)
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SinceH(Xi, Yi|π, Z) ≥ H(Xi, Yi|π, Z,X1, Y1, . . . , Xi−1, Yi−1), we see that I(X,Y ;π|Z) ≥ ∑n
i=1 I(Xi, Yi;π|Z)

as desired.
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