
CS 229r Information Theory in Computer Science March 01, 2016

Lecture 11
Lecturer: Madhu Sudan Scribe: Tanay Mehta

Today, we will finish proving the lower bound for the set disjointness problem. To do this, we will
introduce new concepts such as embeddings and the Hellinger distance.

Information Complexity and Set Disjointness (Minjae)

Last time, we introduced the set disjointness problem for communication protocols. In order to prove lower
bounds for this, we defined the concept of information cost as the mutual information between the inputs
to the problem and communication protocol. The information cost of a protocol computing a function is a
lower bound for the communication complexity. Therefore, we can prove lower bounds for the communication
complexity of computing a function by showing lower bounds for its information cost. In particular, our goal
is to prove the following theorem.

Theorem 1 ICµ,f (Disj) = Ω(n)

We will show this theorem by proving the series of lemmas outlined in the previous lecture. Last time, we
proved the following.

Lemma 2 I(X,Y ; Π|Z) ≥
∑n
i=1 I(Xi, Yi; Π|Z)

We will now prove the following.

Lemma 3 I(Xi, Yi; Π|Z) ≥ ICµi|Zi
(Disj1)

Recall that the distribution µ is defined as follows. Let X̃1, . . . , X̃n, Ỹ1, . . . , Ỹn, and Z1, . . . , Zn be i.i.d. from
the uniform distribution U({0, 1}). Define Xi = X̃i ∧ Zi and Yi = Ỹi ∧ Z̄i. Then, µ is the distribution
µ→ (X,Y, Z).

Note that Lemma 3 does not follow immediately from definitions because Π does not depend on one-bit
inputs but n-bit inputs. We can get around this issue by using embeddings.

Embedding:

R = {Zj}nj=1,j 6=i

RA = {X̃j}nj=1;j 6=i

RB = {Ỹj}nj=1;j 6=i

Xj := X̃j ∧ Zj
Yj := Ỹj ∧ Z̄j

X ← {Xj}
Y ← {Yj}

Embeddings can be thought of as a zero-communication protocol with common randomness independent of
the inputs Xi and Yi. For this specific protocol, we claim the following.

Claim 4 Disjn(X,Y ) = Disj1(Xi, Yi)
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Proof

Disjn(X,Y ) =

n∨
j=1

Xj ∧ Yj

=

 n∨
j=1

Xj ∧ Yj

 ∨ (Xi ∧ Yi)

=

 n∨
j=1

X̃j ∧ Ỹj ∧ Zj ∧ Z̄j

 ∨ (Xi ∧ Yi)

= Xi ∧ Yi

where the last equality follows since Zj ∧ Z̄j = 0 from the previous line.

Proof [Lemma 3]
Define the following protocol making use of the above embedding.

Π1 := Π(embed(Xi), embed(Yi))

From definitions, we have that

I(Xi, Yi; Π1|Z) ≥ ICµi|Zi
(Disj1)

since IC is taken as the minimum over distributions. Furthermore, we have by construction that

I(Xi, Yi; Π|Z) = I(Xi, Yi; Π1|Z)

Combining these two, we have the statement of lemma 3.

Note that the embedding construction fully requires common randomness Z.

We will now prove one final lemma that implies Theorem 1.

Lemma 5 I(Xi, Yi; Π|Z) > 0 where Xi, Yi ∈ {0, 1}

Since Xi, Yi are one-bit values, we will suppress the subscripts for ease and write them as X,Y . We can also
now restrict Z to one-bit. There is some protocol to account for throwing out n− 1 bits. We will also define
the notation ΠXY := Π(X,Y ). Therefore, we have 4 possible transcripts: Π00,Π01,Π10,Π11. Note that we
have

I(X,Y ; Π|Z) =
1

2
(I(Y ; Π0Y ) + I(X; ΠX0))

Now, we claim that all possible values of X,Y cannot be identically distributed. Suppose that Π00 ≡ Π01

and Π00 ≡ Π10. This implies I(Y ; Π0Y ) = 0 and I(X; ΠX0) due to the rectangle property.

Rectangle property:
Suppose we have X,Y and X ′, Y ′ such that

Π(X,Y ) = t = Π(X ′, Y ′)

then for deterministic protocols, we have that

Π(X ′, Y ) = t = Π(X,Y ′)
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We can extend this property to private randomized communication protocols by factoring out the private
randomness and making it part of the input.

Π((X,RA), (Y,RB)) = t = Π((X ′, R′A), (Y ′, R′B))

=⇒ Π((X ′, R′A), (Y,RB)) = t = Π((X,RA), (Y ′, R′B))

This statement implies the following by looking at the probability for X,Y to yield a specific transcript t.

Pr[Π(X,Y ) = t] · Pr[Π(X ′, Y ′) = t] = Pr[Π(X,Y ′) = t] · Pr[Π(X ′, Y ) = t]

The rectangle property for probabilistic protocols suggests that there is distance property between the input
distributions. The correct distance measure for this case turns out to be the Hellinger distance.

Hellinger distance: For a finite universe, we define the Hellinger distance to be

h(P,Q) =
1√
2
||
√
P −

√
Q||2

=

√
1−

∑
w∈S

√
P (w) ·Q(w)

where S is the support. The above sum is known as the Bhattacharya coefficient. The 1√
2

factor scales the

distance to be between 0 and 1. The Hellinger distance has the triangle property and other properties of
distance measures. As a side note, the Hellinger distance can be generalized to continuous settings with the
Lebesgue measure.

Recall the total variation distance.

TVD(P,Q) =
1

2
||P −Q||1

By the properties of the 1 and 2-norms, we have the following bounds.

h2(P,Q) ≤ TVD(P,Q) ≤
√

2h(P,Q)

Ideally, we would like to find the total variation of the distributions in questions. However, this is difficult
due to the rectangular property. The Hellinger distance has a property similar to the rectangular property.

Lemma 6 (Cut & Paste Lemma) h(Π(X,Y ),Π(X ′, Y ′)) = h(Π(X ′, Y ),Π(X,Y ′))

Therefore, we have h(Π01,Π10) = 0 =⇒ h(Π00,Π11) = 0. Now, we can prove Lemma 5.

Proof [Lemma 5] Take Z = 0. Then, we can view Y as an indicator in I(Y ; Π0Y ) where

Y = 1→ t Π01

Y = 0→ t Π00

Define the Jensen-Shannon divergence for arbitrary distributions P,Q to be

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

where M := 1
2 (P +Q) and DKL is the KL-divergence. DJS can be thought of as a symmetric (on the inputs)

version of the KL-divergence.

Then, we have that

I(Y ; Π0Y ) = DJS(Π01||Π00)

=
1

2

(
DKL(Π01||Π0 1

2 ) +DKL(Π00||Π0 1
2 )
)
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where Π0 1
2 = (Π00+Π01)

2 . By Pinsker’s inequality,

DKL(Π01||Π0 1
2 ) ≥ 1

2

(
TVD(Π01,Π0 1

2 )
)2

=
1

2

(
TVD(Π01,Π00)

2

)2

Note that TVD(Π01,Π10) ≥ β for some β. This implies that TVD(Π01,Π00) ≥ β/2, or TVD(Π00,Π10) ≥ β/2.

Therefore we have a lower bound of β2

16 .

We want a lower bound for the following.

TVD(Π01,Π10) ≥ h2(Π01,Π10)

= h2(Π00,Π11)

≥ TVD(Π00,Π11)2

2

For these distributions, note that Π11 accepts transcript t with 1 − ε probability and Π00 accepts with

probability ε. Therefore, TVD(Π00,Π11) ≥ 1− 2ε. This gives us a final, positive lower bound of (1−2ε)4

64 .
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