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Lecture 12

Lecturer: Madhu Sudan Scribe: Tianren Liu

1 Today’s Topic
e Direct Sum Problem

e Internal Information Cost

2 Direct Sum Problem

For any two party computation problem f : {0,1}* x {0,1}¢ — {0, 1}, consider its direct sum problem
FE 0,1} x {0,139 — {0,1}"
Such that
f®n('r17yla cee 7xn7yn) = (f(xlay1)7 LR f(zn,yn))
It’s obvious that CC(f®™) < n-CC(f). It might seem that there are no better way to compute f©™ than

compute each coordinate individually.
While there exists function f such that CC(f®™) < n-CC(f).

Aside: Computational Complexity

There exists function a f such that T'(f) > 2/ log ¢, while T'(f®") < n-T(f) for some
n. T(f) is the computional complexity of f, measured by time or circuit size.

For x € {0,1}%, let f(z) = Apx. {A,}52, is a family of matrix. There exists a family
of matrix such that f(z) needs Q(¢2/log/) size circuits to compute. While its direct
product f®” can be speeded up by matrix multiplication.

Theorem 1 ([BBCR10]). Informal, for all f,p, CC,n(f*™) Z CC.(f) - /n
More precisely, we also need to consider the error probability.

CCun (&™) = QUCCpe(f) - V).
Notice that the error probability preserves. Compare it with the naive upper bound
CCun o (f®™) <n-CCLe(f)

where 1 —¢’ = (1 —¢)™.
Later work study the asymptotic behavior of the amortized communication, showing that the communi-
cation complexity to compute f®" grows linearly.

Theorem 2 ([BR11]). For all f, p,e¢,
1 .
. - " Rn _ int
Jim —CCun o (f7) = ICL(f)

Moreover, in [BBCR10], they prove a stronger result for some functions. Let f™" : ({0,1}* x {0,1}%)" —
{0,1}™ denotes the parity of n outputs, or more generally, the sum of n outputs modulo K.

n
f+n(xl7yla CIIE 7xn7yn) = Zf(x'uyz)
=1

fT™ output much less information then f®”, one might expect " would be much easier to compute. While
there exists function f (and distribution p) such that CC,n (f1™) 5 CC.(f) - v/
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3 Internal Information Cost
We use the same notations as previous lectures. The two-party computation scheme isI1 = II(X,Y, R, R4, Rp).

Use capital letter to denote random variables. X is Alice’s private input; Y is Bob’s private input; R is
common randomness; R4 (Rp) is the private randomness of Alice (Bob).

(z,y) < p

] 7]
/ \
{ Ry }—> Alice Bob <—£ Rp }

In previous lectures, we've discussed external information cost ZC™*(II) = I(XY;II|R), what can an
external party learn from the transcript.

In this lecture, we consider internal information cost, ZC™ (IT) = I(X;T|Y R) + I(Y;TI|X R), what each
party can learn about each other’s input by reading the transcript.

Definition 1 (internal information cost). ZC™ (IT) = I(X;II|Y R) + I(Y; 1| X R).

A natural definition of internal information cost should be ZC™ (IT) = I(X;|Y RRp) + I(Y;I[|XRR ).
Notice that I(X;II|YR) = I(X;II|Y RRp), this justifies our definition.

Claim. ZC™ (II) < ZC™(IT) < CC(II)
Proof. Let Il is a k-bit transcript, then

k
I(X;TYR) = I(I; X|Y, R, ... TL;_y)

i=1

k

I(V;TXR) = > I(I;Y|X, R, ... 11 )
=1
k

I(X,Y;M|R) = > I(I; X, Y[R, ... T1;_y)

i=1

Let Zy,...,Zr € {a,b} be random variables, Z; is the party who send the i-th bit. By the con-
straint of two-party computation, Z; is determined by R,II;...II;_;. Conditional on a assignment of
R=nrIL...I;_y = m...T_1, w.olg assume Z; = b (Bob would send the i-th bit), then Bob learn
nothing from the next bit as it’s generated by him. Based on this intuition, it’s easy to prove that

[(Hz,X7Y|R,H1 .. ~Hi—1aZi = b)
= I(HZ,X|R,H1 . "Hi—17Zi = b) +I(H17Y|X,R,H1 . --Hi—hZi = b)
Z I(Hi;lev,R,Hl...Hifl,Zi = b) +I(H¢;Y|X7R,H1 ...Hl;l,Zi = b)

=0
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Similar inequality holds when conditional on Z; = a. Then
I(l_[“)(,}/|R7 Hl ce Hi—l)
= Z Pr[Z; = 2]I(I;; X, Y|R, 1L, ... T1;_y, Z; = b)
z€{a,b}
> S Pz =4 (I(Hi;X|Y, RIL.. Ty, Zi =2)+ I(I; Y|X, R0 .. T, Z; = z))
z€{a,b}
= I(H“Y|X, R, H1 ce Hi—l) + I(H“X, Y|R, H1 [N Hi—l)

Take the sum of both sides of the inequality for ¢ = 1,...,n finish the proof. O

4 Direct Sum Problem (Continued)

Informally, the following lemma shows that the (internal) information cost of direct sum f®" is n times that
of f.

Lemma 3. If you have protocol for f®™ with information cost T and communication C. Then you can get
protocol for [ with communication C and information cost < T /n.

The following lemma shows that if there is a long protocol has low information cost, it can be compressed.
Lemma 4. If you have protocol for f with communication C and information cost T. Then there exists a
protocol for f with communication O(\/?élog(f).

Suppose CC(f®") = k. Then Lemma 3 shows that there exists protocol II' computing f such that
CC(M) < k and ZC(IT) < £. Then apply Lemma 4, CC(f) < % -/logk.

Proof of Lemma 3. Alice and Bob are given input z,y sampled from p. They know a protocol II that
compute f®. They want to use protocol the same protocol to solve the problem f(x,y).

1. Pick a random location j € {1,...,n}.

2. Construct input pair (z1,...,2y), (y1,...,Yn) such that (z;,y;) = (z,y).
For i < j, z; is sampled from px using public randomness, and y; is sampled from py|x—,, using
Bob’s private coins.
For i > j, y; is sampled from py using public randomness, and z; is sampled from px|y—,, using
Alice’s private coins.

3. Run the protocol f®” and use the j-th bit of the output.

Denote above protocol by II'. The communication complexity of I’ is the same as II. The first term of
the internal information cost of I is

E[I(Xj;myj,R,j, X1, X1, Y41 ..Yn)]
J

We claim that it’s no more than (in fact, equals to)

1
—I(X1,..., XY, ... Y, R).
n

first term of ZCt(IT)

]E[I(Xj;myj, Rj. X1, .. Xj_1,Yis1... V)
J

1 n
==Y I(X;T|Xy... X 1,Y1... Yy, R)

nj:1

1
= —I(Xy1,..., X OY;...Y,, R)

n
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Similar equality holds for the second term of the internal information cost of IT', II. Thus

e (Ir) = %IC““(H) O
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