
CS 229r Information Theory in Computer Science March 29, 2016

Lecture 17
Lecturer: Themis and Ali Scribe: Guannan Qu

1 Introduction

In this lecture we will cover Lovasz Local Lemma. We will give its definition and application, and give a
constructive proof (which uses information theory) for it. Lovasz Local Lemma was first discovered in [2]
but the proof is not constructive. The first constructive proof was given in [1], and the version we are going
to cover in this lecture is derived from [3].

In many combinatorial problems, the objective is to prove the existence of some combinatorial object,
and this object can be specified as an avoidance of bad events. An usual approach is to use a probabilistic
argument, i.e. proving the object (understood as event) occurs with non-zero probability. Examples include
graph coloring, where the bad events are two neighboring nodes being monochromatic; and k-SAT, where
the bad events are that the clauses are not satisfied.

Formally, in a probability space, let the bad events be A1, A2, . . . An, and we would like to prove

P(∩iĀi) > 0

One naive way to do this is using union bound

P(∪Ai) ≤
∑
i

P(Ai)

And we need to show the right hand side is strictly less than 1. However, this bound can be very loose,
especially when the number of events are large, or the probability of a certain event is large, in which case
the right hand side of the above can be larger than 1. Another approach is that, when the Ai’s are mutually
independent, we have

P(∩iĀi) = Πi(1− P(Ai))

so we only need to show P(Ai) < 1,∀i. But usually, the Ai’s are not mutually independent and the above
argument does not work. What Lovasz Local Lemma does is that it relaxes the mutually independence
requirement to some ‘limited dependence requirement’, but still get a similar result as the mutually inde-
pendent case. To formally state the Lovasz Local Lemma we need the following definitions.

Definition 1 Given events A1, . . . , An and a undirected graph G = (V,E) where the vertices V are the set
of events, we say G is the dependece graph for the events if ∀i, Ai is independent from events {Aj : j 6= i
and Aj is NOT a neighbor of Ai}. We also define Γ(Ai) to be the the set of neighbors of Ai in G, and
Γ+(Ai) = {Ai} ∪ Γ(Ai)

We now formally state the Lovasz Local Lemma.

Theorem 2 (General Lovasz Local Lemma) Supppose A1, . . . , An are bad events with dependence graph
D. If ∃x1, . . . , xn ∈ (0, 1) such that ∀i,

P(Ai) ≤ xiΠj∈Γ(Ai)(1− xj)

then P(∩iĀi) ≥ Πn
j=1(1− xj) > 0

There is also a symmetric version of Lovasz Local Lemma.

Theorem 3 (Symmetric Lovasz Local Lemma) Given events A1, . . . , An, and each Ai is independent
from all but at most d other events (in other words, the events have a dependence graph with maximum
degree upper bounded by d). If ∃p > 0 s.t. ∀i,P(Ai) ≤ p and p(d+ 1) ≤ 1

e , then P(∩iĀi) > 0

17-1

Remark The Symmetric Lovasz Local Lemma is an easy corollary of the General Lovasz Local Lemma.
Think of xi = 1

d+1 ∈ (0, 1), then ∀i,

P(Ai) ≤ p ≤
1

d+ 1

1

e
<

1

d+ 1
(1− 1

d+ 1
)d ≤ xiΠj∈Γ(Ai)(1− xj)

where we have used |Γ(Ai)| ≤ d. Then by the general Lovasz Local Lemma, we have P(∩iĀi) ≥ (d
d+1)n > 0

2 Applications

We now give two applications of Lovasz Local Lemma.
Hypergraph Coloring. Given hypergraphH = (V,E), where each edge e ∈ E is a subset of vertices. We

want to assign colors to each vertex, i.e. find a map c : V → {red, blue}, such that no edge is monochromatic.
In general deciding if there exists a coloring of a hypergraph is NP-hard. However if the hypergraph satisfies
certain conditions, we can guarantee a coloring exists. In details, we assume in the hypergraph, each edge
has at least k vertices, and no edge intersects more than d other edges. Then we can show if e(d+1) ≤ 2k−1,
there exists a coloring. To see this, we randomly color all the nodes uniformly. Define event Ai to be the
event edge i is monochromatic. Then P(Ai) ≤ p = 1

2k + 1
2k = 1

2k−1 , and each Ai is independent from all but
at most d other events. Since ep(d+ 1) ≤ 1, we can apply the Symmetric Lovasz Local Lemma and conclude
∩Āi happens with positive probability.

k-SAT. Suppose there are n boolean variables, x1, . . . , xn, and m clauses C1, . . . , Cm, where each clause
is a disjunction of k literals (a literal is a xi or its negation x̄i). For example, if k = 3, a clause could be
Ci = x1 ∨x3 ∨ x̄4. The objective of k-SAT is to decide whether there exists an assignment of x1, . . . , xn such
that all the clauses are satisfied. This is in general a NP-hard problem (when k ≥ 3) but we can use Lovasz
Local Lemma to show that when the clauses satisfy certain conditions, a satisfying assignment exists. Given
a k-SAT instance, the condition is that no variables appear in more than 2k−2/k clauses. To see this, we
randomly assign values to x1, . . . , xn. Let Ai be the event that clause Ci is not satisfied. Notice each Ci

have k variables, we have P(Ai) ≤ p = 1
2k . Since each variable appears in no more than 2k−2/k clauses, Ai

is independent from all but at most d = 2k−2 other events. We can check p(d + 1) < 1
e , therefore we can

avoid all events with positive probability. Hence a satisfying assignment exists.

3 A Constructive Proof of Lovasz Local Lemma

In this section, we will give an efficient randomized algorithm that, when the conditions in Lovasz Local
Lemma hold, can output a sample in the probability space that avoids all the bad events Ai in polynomial
time. We will state and analyze the algorithm in the context of the k-SAT problem.

Theorem 4 There exists an algorithm, such that given a k-SAT instance, that is, a set of n variables
x1, . . . , xn and m clauses C = {C1, . . . , Cm} where each clause depends on exactly k variables, when each

variable xi appears in less than 2k−3

k clauses,1 the algorithm will output a satisfying assignment for this
k-SAT instance in poly(n,m) time. 2

To introduce the algorithm, we define a undirected graph G = (V,E) whose nodes are the clauses C, and two
clauses Ci and Cj are connected if and only if they share a common variable. We define vbl(Ci) to be the set
of variables in Ci. We define Γ(Ci) to be the set of neighbors of Ci in G, and we define Γ+(Ci) = Γ(Ci)∪{Ci}.
We also define d to be the maximum degree of the graph, and we have d < 2k−3. The algorithm is given in
Algorithm 1.

As we can see, the algorithm contains a main function ‘Solve’ and a recursive function ‘Fix’. We now
analyze the algorithm. We have the following two claims.

1The optimal quantity here should be 1
e
2k

k
. To simplify the proof we prove a suboptimal quantiy 2k−3

k
.

2Here we need to assume the following two operations can be conducted efficiently. First, we can efficiently sample from
{0, 1}n uniformly. Second, given an assignment σ and a Clause Ci, we can efficiently check if Ci is violated by σ

17-2

Algorithm 1 Lovasz Local Lemma Search (k-SAT)

1: function Solve(x, C) . x is the set of variables, C is the set of clauses
2: σ ← a uniformly random assignment in {0, 1}n
3: while ∃Ci such that Ci is violated by σ do
4: σ ← Fix(C, σ, Ci)

5: return σ
6: function Fix(C, σ, Ci)
7: σ′ ← resample the variables in vbl(Ci), while other variables same as σ
8: while ∃Cj ∈ Γ+(Ci) such that Cj is violated by σ′ do
9: σ′ ← Fix(C, σ′, Cj)

10: return σ′

Claim 5 Assuming ‘Fix’ can terminate, ‘Solve’ calls ‘Fix’ for at most m times and outputs a satisfying
assignment.

Proof Let Di be the set of clauses that lie within the same connected component as Ci in G. Assume
Fix(C, σ, Ci) terminates. Then the returned assignment must satisfy all clauses in Di, while the variables
that is not involved in any clause in Di remain the same as σ. Therefore, after each call of ‘Fix’ by ‘Solve’,
the number of violated clauses decreases by at least 1. Hence ‘Solve’ calls ‘Fix’ for at most m times, and
will output a satisfying assignment.

Claim 6 ‘Fix’ terminates after poly(n,m) resampling procedures.

Proof We can understand the operation of ‘Fix’ in the following way. Suppose the input assignment to
‘Fix’ is σ0, and then ‘Fix’ will repeatedly calls itself and conduct many resamplings (Line 7 in Algorithm 1).
We let the t-th resampled assignment be σt, and in the t-th resampling, let the clause being resampled be
C`t , and let the vbl(C`t) part of σt be rt (which is a k-bit random string). We define Logt = C`1C`2 . . . C`t ,
which is a record of the clauses being resampled. We also define Rt = r1r2 . . . rt which is the concatenation
of all the random bits used for resampling. Rt has length kt.

We claim that we can recover Rt from Logt and σt. Given σt and Logt, we know that σt is constructed
from σt−1, but with the variables in vbl(C`t) being replaced by rt. Hence, rt are the values of the vbl(C`t)
part in assignment σt. In this way we can recover rt. Next, notice that σt−1 violates C`t , therefore, the
vbl(C`t) part of σt−1 can be uniquely determined, while σt−1’s other variables are the same as σt. Hence we
can also recover σt−1. Then repeat this procedure, we can recover all rt−1, . . . , r1, and hence we can recover
Rt.

Then, we can apply the data processing inequality,

H(Rt) ≤ H(Logt, σt) ≤ H(Logt) +H(σt)

Since σt have n bits, H(σt) ≤ n. Since Rt is a kt-bit uniformly random string, H(Rt) = kt. Therefore, we
have

H(Logt) ≥ kt− n

The next step is to upper bound H(Logt). We provide the following encoding of Logt. First, we encode C`1

using logm bits. Then, notice C`1 . . . C`t can be understood as the recursive tree τ of the algorithm. τ is
rooted at C`1 , and C`i is a parent of C`j if and only if the run of ‘Fix’ on C`i calls ‘Fix’ on C`j . By the
nature of the algorithm, if C`j is a child of C`i , then C`j ∈ Γ+(C`i). Using this special structure we can
embed τ in a infinite tree T , where T is rooted at C`1 , and is constructed in the following way: each node
C` has exactly d + 1 children, each representing a element in Γ+(C`).

3 Then τ corresponds to a subtree of
T rooted at the root of T with size t. By some counting arguments, T has no more than (4(d + 1))t such

3It might be that |Γ(C`)| < d, but it doesn’t matter since we can create some ‘fake’ neighbors of C`.

17-3

subtrees, and hence τ can be encoded using t log 4(d + 1) < t(k − 1) bits, and hence Logt can be encoded
using logm+ t(k − 1) bits. Therefore,

logm+ t(k − 1) ≥ H(Logt) ≥ kt− n

This gives t ≤ n+ logm, i.e. the ‘Fix’ must terminate after no more than n+ logm resamplings.

It is easily seen that the two claims lead to Theorem 4, and we can conclude the algorithm terminates
after no more than m(n+ logm) resampling procedures.

References

[1] József Beck. An algorithmic approach to the lovász local lemma. i. Random Structures & Algorithms,
2(4):343–365, 1991.

[2] Paul Erdos and László Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. Infinite and finite sets, 10(2):609–627, 1975.

[3] Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. Journal of
the ACM (JACM), 57(2):11, 2010.

17-4

