CS 229r Information Theory in Computer Science Mar 31, 2016

Lecture 18
Lecturer: Madhu Sudan Scribe: Victor Balcer

Today will be our first day on the parallel repition theorem. In this lecture, we will set up the
background with 2-prover 1-round games, state the theorem and a key lemma that we will use to
prove the theorem in the following class.

1 2-Prover 1-Round Games

We will start with an example. Given a nonbipartite graph G = (V, E) (for simplicity we consider
an odd cycle). There are two provers Alice and Bob (A and B) who try to convice a third player
(which we will call the verifier) that the graph G is 2-colorable. We consider the graph G to be
public, but large enough that the verifier is unwilling to check for itself whether the graph is 2-
colorable. Because it is nonbipartite, G is not 2-colorable. We set up the game in the following
way:

e The verifier picks z,y € V and gives = to Alice and y to Bob (Alice does not know Bob’s
input and vice versa).

e Alice and Bob will return to the verifier a color based on some 2-coloring. We denote the
outputs a = A(z) and b = B(y). Based on these responses the verifier will decide whether or
not the graph is 2-colorable.

e To catch Alice and Bob in a lie the verifier must choose the verticies in a strategic manner.
It can either

1. pick z = y € V where it would expect Alice and Bob to return the same color or

2. pick (z,y) € E where it would expect the returned colors to be different.

So the best strategy for Alice and Bob to cheat the verifier would be to agree on some maximal 2-
coloring such that exactly one edge has the same color verticies and the other edges are alternating in
color. We say the verifier will choose values randomly (the case to test and then the actual verticies).
The verifier will catch the lie only if it queries the one edge with the same color verticies. Therefore,

Alice and Bob win the game (convince the verifier the graph is 2-colorable) with probability 1 — 5=

2[E]
(3 for the edge case and ﬁ for the bad edge).
We now give the general definition for 2-prover 1-round games.

Definition 1 We define a 2-prover 1-round game (call it G) as follows. There are two provers A
and B which are given as inputs x and y respectively. x and y are sampled from distributions X and
Y (not necessarily independent). The goal of the provers is to satisfy a predicate V(x,y,a,b) = 1.

a+ A+—x+ X b+ B+ y<«Y

In the context of our example

1 (x=y)A(a=0D)
V(z,pab) =4 1 (2 #y)Ala#b)
0 otherwise
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We are interested in the how well the provers can achieve their goal.

Definition 2 We define the game value of G as

val(G) = max Pr [V(z,y,a,b) =1]

where the mazimum is taken over strategies A and B.

1.1 Repitition

We can increase the probability of catching a lie by repeating the game multiple times. If in all
instances Alice and Bob wins, then the verifier should be convinced Alice and Bob are telling the
truth. If they lose any instance, then the verifier has caught them in a lie. We can modify our
game to capture repitition with two models.

Consider repitition by repeating the game multiple times sequentially; provers are given the
next input after responding to the current input. This is serial repitition and has game value
val(@)* where ¢ is the number of rounds.

Consider a different model where the inputs and outputs of Alice and Bob are now replaced
with tuples.

(a1,...,a) < A<+ (z1,...,7¢) + X (biy...,b) < B+ (y1,...,y1) < Y

In this setting the provers get all inputs at the same time. So the provers win if and only if they
win every round. This model is known as parallel repitition and will be written as G*.

Definition 3 The game value of G! is defined as

val(G') = max Pr((Vi s.t. 1< <)(V(zi, i, ai,b:) = 1)]

2 Parallel Repitition Theorem

It was originally conjectured that val(G') = val(G)*. However this is incorrect. Trivially val(G?) >
val(G@)! because we can consider each input independent from the other inputs (¢ repititions of G).
The following counterexample shows Alice and Bob can do better than val(G)*.

We construct the Feige game [1] as follows:

1. z,y < {0,1} (independent and uniformly drawn) are given to Alice and Bob, respectively.

2. Alice and Bob have outputs of the form a = (P,, 3,) and b = (P, 5) where P € {A, B} and
p e 10,1}

3. The verifier has predicitate V(x,y,a,b) = 1 if and only if a = b = (A, z) or a = b = (B, y).

Intuitively, Alice and Bob win if and only if they agree on the same player (A or B) and they both
correctly predict the input given to that player.

Claim 4 The Feige game G has game values

val(G) = % and val(G?) = %
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Proof val(G) = 1 because no matter the strategy one player must always guess the other player’s

-2
input.
Consider the game G?2. Alice has input z1, 2 and Bob has input 41, y2. The players will output

a; = (A,x1) by = (A 12)
az = (B,z1) by = (B,y2)

By construction, Alice and Bob will win if and only if 21 = y». Let w; be the event that Alice and
Bob win the i-th game. So

1 1
Pr{wjws] = Pr[w;|Pr[wa|wi] = 3 1= B

The first probability is 1/2 because the inputs are drawn randomly and the second probability is 1
as conditioning on winning the first game ensures 1 = yo. B

So this counterexample has shown us that val(G?) € val(G)!. Now, we want to know what is a
good upperbound for val(G*)?

Claim 5 val(G) is a naive upperbound to val(G?).
Proof Assume otherwise. Then there exists some strategy where Prwy,...,w;] > val(G). So
Pr{wi] - ... Prlwiws,...,wi—1] > val(G)

This implies Pr[w;] > val(G), a contradiction. W

Theorem 6 (Verbitsky [2]) If val(G) < 1, then

lim val(G*) =0

t—o0

However this result is too weak for application as the decay is too slow as it depends on the size of
the game (the number of possible question answer pairs). In addition, the proof is existential and
does not yield an actual strategy.

In the context of our graph coloring example, this theorem implies that the verifier is likely to
catch the lie if the game is repeated many times (exponential in the number of verticies), but not
for a fixed number of times independent of the graph size.

2.1 Main Theorem

The parallel repitition theorem is stated below. It was originally proved by Raz in 1998 and
simplified by Holenstein in 2007 [3, 4].

Theorem 7 Ifval(G) < 1 — a, then
val(G?) < (1 — o®)%kel®)
where k is the number of responses.

We will use the notation w; for the event where V' (z;,y;, a;,b;) = 1 and wg for the event where
V(zi,yi,ai,b;)) = 1foralli € S C {1,...,t}. The following lemma will be an important part of our
proof.
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Lemma 8 (Raz’s Lemma) If val(G) < 1 — « then there ezists a constant ~y(k,a) such that
VS C {1,...,t} with |S| < ~t, then either

1. Prlwg] <277

2. 3i ¢ S such that Pr{w;|ws] <1—a/2

Assuming this lemma, the previous theorem follows.
Proof [Theorem 7] We start with an empty set Sy and will continue adding verticies as long as
we can keep applying the previous lemma. We can win Sy with probability 1 as it is empty. Then
there exists i such that Prw;, |wg,] < 1 — a/2. Thefefore, S; = Sy U {i1}. We can keep repeating
this process

1. until we have a set S; such that Pr{wg,] < 277. Thus we are done as winning the entire
game requires us to win on Sj;, but that happens with exponentially small probability.

2. or |Sj| = ~t. But from this step, we can compute the probability of winning.

Pr{ws,] = Prlw;, |ws,_,|Pr[ws,_,] < (1 —a/2)Prlws; ;] < (1 - a/2)"

Therefore, val(G') < max{2~7%, (1 — «/2)""} which completes the proof. B

2.2 Proof Idea for Raz’s Lemma

For now, we will provide a high level sketch for the proof of Raz’s Lemma. We will prove the lemma
by showing the contrapositive. i.e. if there exists S such that |S| < ¢, Prwg] > 277 and Vi ¢ S
Pr{w;|wg] > 1 — /2, then val(G) > 1 — a.

We proceed by considering some instance of G. The provers will then embed G into an instance
of G' in a way that allows the provers to win on the embedded instance with high probability
which completes the proof. This strategy is similar to what we covered in an earlier lecture on set
disjointness.

2.2.1 Randomized Provers

Up until now we have been using deterministics provers. In the proof we will consider randomized
provers even though both of these are models are equivalent. Let r be public randomness, r4
and rp be the private randomness for Alice and Bob. Therefore, A, ,, is deterministic when the
randomness is fixed (likewise for Bob). Therefore,

val(G) = E [ val (G)]

T™TrATB ATVV‘A 7B7‘y’V‘B

So we can just fix the provers that maximize this value which completes the argument for equiva-
lence.
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2.2.2 Main Idea

We start with an instance of G (inputs x and y to Alice and Bob). Because we plan to embed in
a higher dimension Alice and Bob need to be strategies on inputs (x1,...,2:) and (y1,...y;). For
any fixed strategy we assume that Raz’s Lemma is false. i.e. there exists S such that |S| < 4t,
Pr[wg] > 277" and Vi ¢ S Pr|w;|ws] > 1 — /2.

To understand conditioning on wg we consider all inputs where Alice and Bob win on S (their
strategies need to be fixed to do this). Note that winning on S may restrict the inputs on coordinates
not in S. In the case of the Feige game, ya % (y2|x1,w1) because winning on the first game requires
1 = Y2.

We will need to use the following lemma.

Lemma 9 (Sublemma) Given the distribution

Llye-ey Tt
ws
Yty -+ Ut

there exists i ¢ S such that the distributions (x;, yi|lws) ~ (zi, yi).

In the context of the Feige example the distributions (zg,y2|w;) and (z2,y2) are identical as w;
only gives the condition z1 = ¥s.

So imagine there is some god looking at (x,y) who will create (z1,...,2) and (yi,...y:) for
Alice and Bob. The god will sample from the distribution

Lly--ey Tt
ws
Yty Ut

while setting (x,y) as the inputs to the i-th game (i from the sublemma). The god can set the i-th
game to the original inputs because the sublemma states that conditioning on wg does not change
the distribution of the inputs to the i-th game. By our assumption that Raz’s Lemma is false and
i ¢ S we have Pr[w;|wg] > 1 — a/2. Now, we assume that Alice and Bob know i and S.

So given this god Alice and Bob have a strategy to win the i-th game (original inputs) with
probability > 1 — «/2. However, Alice and Bob cannot sample from this god distribution exactly
and the proof will show that the error of simulating god is small (< «/2). Thus, we can still win
the original game with probability > 1 — « which completes the proof.

2.2.3 Difficultly with Simulating God

Alice and Bob are able to use shared randomness to sample from the god distribution except on
the i-th game because they do not know each other’s inputs. Informally, to simulate god Alice and
Bob both want to sample from the distribution

<l‘1,...,l’t $Z:£L'>
ws,
Yi, - Yt Yi=Y
However, they only know their own input and must sample from (Alice on the left and Bob on the
right)
<.’,E1,...,$t w x_.’,lf> <x1a"'a$t w — >
yl?"'?yt S’ ! yl""?yt S,yz y

Part of the proof will show all three of these distributions are “close” and therefore we can use a
correlated sampling technique to simulate sampling from our god distribution with minimal error.
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