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1 Preliminaries

In order to continue the proof, we will need to use the following claims:

Claim 1 Let E be an event in a probability space. Then,

D(p(x|E‖p(x))) ≤ log(1/p(E))

where D(p‖q) denotes the Kullback-Leibler divergence.

Proof For the Kullback-Leibler divergence, we have that

D(p(x|E‖p(x))) = Ex∼p(x|E) log
p(x|E)

p(x)

Conditioning on the event E, makes the probability mass outside of E equal to
0 and blows up the probability of each element in E by 1

p(E) . Thus, we get the

result.

By using convexity arguments, we get the following generalization of claim
1:

Claim 2 Let E be an event and A,X be random variables with support of size
k. Then,

EA|E [D(p(x|A,E)‖p(x))] ≤ log(k/p(E))

Claim 3 Let E be an event and U,A,X be random variables with support of
size k. Then,

EA,U |E [D(p(x|A,U,E)‖p(x|U))] ≤ log(k/p(E))

Claim 4 Let p(x, y) and q(x, y) = q(x) · q(y) (i.e q(x, y) defines a product
measure) be two probability distributions. Then

D(p(x, y)‖q(x, y)) ≥ D(p(x)‖q(x)) +D(p(y)‖q(y))
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2 Raz Lemma

We will now see the proof of the parallel repetition theorem by Raz [3] presenting
a simplified proof due to Holenstein [4].

The theorem is stated as follows:

Theorem 5 Let G be a 2-prover-1-round game. If val(G) < 1− α, then

val(Gt) < 2−Ωα,k(t)

where k is the number of possible responses for each player.

Recall here from the previous lecture that we use the notation wi for the
event where V (xi, yi, ai, bi) = 1 and wS for the event where V (xi, yi, ai, bi) = 1
for all i ∈ S ⊂ {1, . . . , t}.

The main ingredient for the proof of the above theorem is Raz lemma [3]
which is stated below:

Lemma 6 (Raz’s Lemma) If val(G) < 1 − α then there exists a constant
γ(k, α) such that ∀S ⊆ {1, . . . , t} with |S| ≤ γt, then either

1. Pr[wS ] ≤ 2−γt

2. ∃i /∈ S such that Pr[wi|wS ] ≤ 1− α/2

Note that the above lemma implies theorem 5 and the upper bound is

val(Gt) < max{2−γt, (1− α
2 )γt}. Roughly, γ ∼ α2

log k .
Proof For the sake of contradiction we assume that the conclusion of the
above lemma does not hold.

That is,

∃S ⊆ {1, . . . , t} : |S| < γt

Such that both:

1. Pr[wS ] ≥ 2−γt

2. ∀i 6∈ S : Pr[wi|wS ] > 1− α
2

Now, let S be the last t − r coordinates. We would like to use the to
above conditions in order to contradict the fact that val(G) < 1− α. However,
the second condition above is about a distribution conditional on the event
WS , while val(G) is the probability of winning an one shot game, which is
unconditional. So, our strategy would be to prove the existence of an index i
such that |Pr[wi|wS ]− Pr[wi]| is sufficiently small.

Indeed, using claim 1 and the fact that p(wS) ≥ 2−γt, we get:

D

(
p

(
x1 . . . xr
y1 . . . yr

∣∣∣∣ws)∥∥∥∥ p( x1 . . . xr
y1 . . . yr

))
≤ γt
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By claim 4:

1

r

r∑
i=1

D

(
p

(
xi
yi

∣∣∣∣ws)∥∥∥∥ p( xi
yi

))
≤ γt

r

Since D(p‖q) ≥ |p− q|2:

Er
∣∣∣∣p ( xi

yi

∣∣∣∣ws)− p( xi
yi

)∣∣∣∣2 ≤ γt

r

Er
∣∣∣∣p ( xi

yi

∣∣∣∣ws)− p( xi
yi

)∣∣∣∣ ≤√2γ

So,

i :

∣∣∣∣p ( xi
yi

∣∣∣∣ws)− p( xi
yi

)∣∣∣∣ ≤√2γ (1)

We now want to argue that val(G) > 1 − α if the 2 conditions above hold.
For that it would be helpful if Xt, Y t were independent. However, we have
to condition on wS to prove this lemma, and unfortunately, Xt|wS , Y t|wS are
not independent. Our goal is to find an auxiliary random variable U such that
Xt, Y t become conditionally independent with respect to wS , U .

The auxiliary random variable U is defined as follows:

U =

(
V1 . . . Vr XS

T1 . . . Tr YS

)
where

Vi =

{
0 w.p 1/2
1 w.p 1/2

Tj =

{
Xj if Vj = 0
Yj if Vj = 1

We define U−i as follows:

U−i =

(
V1 . . . Vi−1 Vi+1 . . . Vr XS

T1 . . . Ti−1 Ti+1 . . . Tr YS

)
As we said, desirable property we would like the random variable U to have

is that: Xt⊥Y t|WS , U,AS , where AS denotes the set of answers from Alice.
Indeed this is true for the above choice of U .

We will now show that Alice and Bob can use shared randomness in order
to sample from the distribution p(u, i, AS |Xi = x, Yi = y,WS) without com-
municating. After doing that, they can sample privately the variables Xt, Y

t

conditioned on those variables ( U,WS , AS ) and return their answers Ai, Bi for
the i-th game. We also have that:

Pr[success] = Pr[Wi] = Ei[Pr[Wi]] ≥ Ei[Pr[Wi|WS ]]−
√

2γ ≥ 1−α
2
−
√

2γ > 1−α
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This is a contradiction to the fact that since the Xt, Yt are independent,
their probability of success can be at most the value of an one-shot game (for
which val(G) < 1− α). That finishes the proof of lemma 6.

It now remains to show that Alice and Bob can indeed sample from the
distribution p(u, i, AS |Xi = x, Yi = y,WS) without communicating. So, we
assume that they use their shared randomness so that Alice samples from
p(u, i, AS |Xi = x,WS) and Bob samples from p(u, i, AS |Yi = y,WS). Even
though they sample from different distributions, we can show that the distri-
butions are close enough so that Alice and Bob can use correlated sampling
and get the same sample most of the time. More specifically, we will use the
following two lemmas:

Lemma 7 There exists some γ(α, k) such that

p(i, xi, yi)·p(U−i, AS |WS , i, xi)
ε
≈ p(i, xi, yi, AS , U−i|WS)

ε
≈ p(i, xi, yi)·p(U−i, AS |WS , i, yi)

where p(x)
ε
≈ q(x)⇔ |p(x)− q(x) ≤ ε| and ε = (α− γ)/10 in our case.

Proof [sketch]
Using claim 3, we can show that

p(i, xi, yi, AS , U−i|WS) = p(AS , U−i|WS) · p(i, xi, yi|AS , U−i, wS) (2)

2ε
≈ p(i, xi, AS , U−i|WS) · p(yi|i, xi) (3)

= p(i, xi|wS) · p(U−i, AS |wS , i, xi) · p(yi|i, xi) (4)
ε
≈ p(i, xi, yi) · p(U−i, AS |wS , i, xi) (5)

For the last step, we also used the fact that conditioning on wS does not change
much, as equation 1 suggests.

The second approximation:

p(i, xi, yi, AS , U−i|WS) ≈ p(i, xi, yi) · p(U−i, AS |WS , i, yi)

follows by symmetry.

Lemma 8 (correlated sampling) There is a protocol for Alice and Bob to
used shared randomness to sample a random variable such that Alice gets value
x ∼ p and Bob value y ∼ q and the probability that their values differ is:
Pr[x 6= y] ≤ 2|p− q|.

Proof Alice and Bob can use their shared randomness to sample an infinite
sequence of tuples: {(xi, ρi)}, where each xi is distributed uniformly on the
sample space and each rhoi is a uniformly distributed real number in [0, 1].
Alice will pick the xi with the smallest index i such that p(xi) ≥ ρi, while Bob
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will pick the xi with the smallest index i such that q(xi) ≥ ρi. It is easy to

see that ∀i, j : Pr[Alice picks xi]
Pr[Alice picks xj ]

= p(xi)
p(xj)

and similarly for Bob. So, they sample

exactly from the distributions p, q respectively, and also the only way they get
a different sample is if for some rhoi it holds that: p(xi) < ρi < q(xi) (or vice
versa), which happens with probability at most 2|p− q|.
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