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Today: Monotone Boolean formulas, specifically threshold functions and a lower bound on formula
complexity for Thn

2 via graph entropy

1 Threshold Functions

Definition 1 A Boolean formula is a Boolean function f : {0, 1}n → {0, 1} which can be computed by
Boolean circuits which are trees, i.e. so that every input bit is read exactly once.

We will regard Boolean functions as maps 2[n] → {0, 1}, where 2[n] denotes the power set of [n], i.e. the
set of all subsets of [n].

Definition 2 A Boolean function is monotone if for all S ⊆ T , f(S) ≤ f(T ), i.e. the circuit for f has no
negations (we can furthermore assume the circuit is over the de Morgan basis of AND/OR’s).

One way to measure the complexity of a Boolean formula is by the size of the corresponding tree circuit.

Definition 3 The size of a Boolean formula is the number of gates in the corresponding circuit, including
input gates.

In this lecture we will consider a special class of monotone functions, threshold functions.

Definition 4 The threshold function Thn
k : 2[n] → {0, 1} is defined to output 1 if |S| ≥ k and 0 otherwise.

For example, Thn
1 (S) is the OR function, Thn

n is the AND function, and Thn/2
n is MAJORITY. For a

given threshold function, what is the minimum size of a formula computing that threshold function? We
deal with the k = 2 case. Here is a naive upper bound:

Proposition 5 size(Thn
2 ) ≤ O(n2).

Proof Consider the formula which is an AND of (xi∨xj) over all i 6= j. This has size
(
n
2

)
+n+ 1 = O(n2)

as desired.

We can do slightly better with a recursive construction:

Proposition 6 size(Thn
2 ) ≤ O(n log n).

Proof Input z ∈ {0, 1}n is concatenation x ◦ y for x, y ∈ {0, 1}n/2, so Thn
2 (x) = (Th

n/2
2 (x) ∧ Th

n/2
2 (y)) ∧

(Th
n/2
1 (x) ∨ Th

n/2
1 (y)). Then the size bound Sn we want is bounded inductively by Sn ≤ 2Sn/2 + O(n), so

this gives Sn = O(n log n), specifically Sn = 2ndlog ne − 1.

The main theorem that we prove today is the following lower bound that almost matches this upper
bound for monotone circuits (monsize is the corresponding formula complexity for monotone formulae):

Theorem 7 (K ’64, NRW ’90) monsize(Thn
2 ) ≥ 2dn log ne − 1.

The proof we give in these notes is by graph entropy.
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2 Graph Entropy

Definition 8 Given G = (V,E), the graph entropy H(G) is defined by

H(G) = min
X,Y

I(X;Y ) = min
Y

[H(X)−H(X|Y )] ,

where X is uniform on the vertices V , and Y is a distribution over independent sets in G which contain X.

Remark Recall that an independent set of a graph is a subset of the vertices such that no edge connecting
two members of the independent set exists in the graph.

Remark Motivation for definition of graph entropy due to Korner ’73: Shannon already showed that usual
notion of entropy correpsonds to optimal compression of symbols in stream, and Korner wanted a relaxation
of this compression problem: vertices are symbols, edges indicate that vertices do need to be distinguished
in final compression. Coloring the graph partitions the vertices into independent sets, and these are sets
where symbols might be confused with each other.

Example 9 The graph entropy of a graph with no edges is zero: H(X) and H(|Y ) are both log n; i.e. in
your compression, you might as well just output nothing because you don’t need to distinguish any symbol
from another. The graph entropy of a complete graph is H(X) is log n: H(X|Y ) = 0; you need to output a
compression with length equal to the entropy of X because every symbol needs to be distinguished from the
other.

Example 10 If G is the complete bipartite set Kn,n, then

H(G) ≤ log(2n)− log(n) = 1,

because if we knew Y , the conditional entropy of X would be entropy of uniform distribution over n vertices.
More generally, if G = Km,n, then

H(G) ≤ log(m+ n)− m

m+ n
logm− n

m+ n
log n = H

(
m

n+m

)
because with probability m/(n+m), Y lands in left half, in which case X conditioned on Y is uniform over
those vertices, and with probability n/(n + m), Y lands in right half, etc. In other words, graph entropy of
bipartite graph should be entropy of m

n+m -biased coin flip.

Proposition 11 Graph entropy satisfies:

1. Subadditivity: For G1 = (V,E1) and G2 = (V,E2), if G = G1 ∪G2, then

H(G) ≤ H(G1) +H(G2).

2. Monotonicity: For G = (V,E) and G′ = (V,E′) such that E ⊆ E′, H(G) ≤ H(G′), i.e. adding edges
cannot decrease entropy.

3. Disjoint union: For G1, ..., Gk connected components of G and ρi = |V (Gi)|/|V |, where V (Gi)
denotes the vertices in Gi, then

H(G) =

k∑
i=1

ρiH(Gi).
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3 Applying Graph Entropy

Let f : 2[n] → {0, 1} be monotone. Define

(f)i = {S ⊆ [n], |S| = i | f(S) = 1 and ∀T ( S, f(T ) = 0}.

Example 12 (Thn
2 )5 = ∅¡ while (Thn

2 )2 = {{i, j} | i 6= j}.

To f , we associate the graph G = (V,E) = ([n], (f)2). Consider the graphs for each gate in a monotone
formula computing f . Certainly GThn

2
is just the complete graph on n vertices. Gxi

is just the singleton
graph.

Let’s look at the behavior of graph entropy as we go up the gates of the formula. First, an easy observation:

Observation 13 If f = g ∧ h, then Gf ⊆ Gg ∪Gh.

Proof Let e = {i, j} be some edge in Gf . This belongs in Gg and/or Gh. We know f({i, j}) = g({i, j})∧
h({i, j}) = 1; WLOG suppose g({i, j}) = 1. Suppose e 6∈ Gg. This would only be the case if there is some
proper subset T ( {i, j} such that g(T ) = 1. But then f(T ) = g(T ) ∧ h(T ) = 1 as well, a contradiction to
the fact that e ∈ Gf .

Corollary 14 Suppose f = g ∧ h. Then by subadditivity, H(Gf ) ≤ H(Gg) +H(Gh).

It’s less clear what we can hope for in the case of AND gates. Suppose {i, j} ∈ Gf . Then {i, j} ∈
Gf\Gg ∪Gh. In fact:

Claim 15
{i, j} ∈ ((g)1\(h)1)× ((h)1\(g)1) .

Define the set on the right-hand side in the claim to be Tgh and we get:

Observation 16 If f = g ∨ h,
Gf ⊆ Gg ∪Gh ∪ Tgh,

Corollary 17 Suppose f = g ∨ h. Tgh is bipartite, so H(Tgh) ≤ 1, and thus

H(Gf ) ≤ H(Gg) +H(Gh) + 1.

We conclude that every formula for Thn
2 uses at least dlog ne AND gates. This isn’t enough, so instead

of graph entropy, we’ll use a different potential function. For gate f , define

λ(f) = H(Gf ) +
|(f)1|
n

.

For example, at the leaves, λ(xi) = 1/n, whereas at the root, λ(Thn
2 ) = log n. With this, we’ll be able to

show that λ(f) is actually additive not just in the OR gates, but in the AND gates as well! This gives a
bound on the number of leaves in this tree of dn log ne. Just to connect all the leaves, we need at least
dn log ne − 1 gates, giving the main theorem.

One last pair of observations before we accomplish all this:

Observation 18 For any gate f in a minimal monotone formula computing Thn
2 , (f)1 = {{i} | f({i}) = 1}.

Proof If this weren’t the case, f(∅) = 1, meaning f is the constant function and we can ignore the gate
f and get a smaller formula for Thn

2 , a contradiction.
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Observation 19 (f)1 ⊆ (g)1 ∪ (h)1.

Lemma 20 If f = g ∧ h, then λ(f) ≤ λ(g) + λ(h).

Proof A straightforward calculation gives:

λ(f) = H(Gf ) +
|(f)1|
n

≤ H(Gg) +H(Gh) +
|(g)1 ∪ (h)1|

n

≤ H(Gg) +H(Gh) +
|(g)1|
n

+
|(h)1|
n

= λ(g) + λ(h).

Lemma 21 If f = g ∨ h, then λ(f) ≤ λ(g) + λ(h).

Proof We know that λ(f) ≤ H(Gg) +H(Gn) +H(Tgh) + |(f)1|
n . But V (Tgh) = |(g)1cup(h)1\(g)1∩(h)1|

n , and
combining this with (f)1 ⊆ (g)1 ∩ (h)1 we get

λ(f) ≤ H(Gg) +H(Gh) +
|(g)1 ∪ (h)1\(g)1 ∩ (h)1

n
+
|(g)1 ∩ (h)1|

n
≤ λ(g) + λ(h)

as desired.
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