Interactive Coding - Lecture 1

Challenge: Can you preserve an interaction when channel is (adversarially/randomly) noisy?

Example: Two players playing online chess over noisy channel.

Interaction:

- Two players A and B.
- Alice has a collection of functions $\Pi_A = \left\{ \Pi_A^{(i)} \right\}$. Similarly, Bob has Π_B .
- $\Pi_A^{(i)} : (\{0,1\}^*)^{i-1} \to \{0,1\}^* \cup \{\bot\} \text{ for odd } i.$
- $\Pi_B^{(i)} : (\{0,1\}^*)^{i-1} \to \{0,1\}^* \cup \{\bot\}$ for even *i*.
- $\Pi_A^{(i)}(w_1, \ldots, w_{i-1})$ specifies what Alice would say in round *i* after history of transcript w_1, \ldots, w_{i-1} .
- $\Pi_A^{(k)}(w_1, \ldots, w_{i-1}) = \bot$ means end of interaction. Output of the interaction is the entire transcript w_1, \ldots, w_k .
- We'll consider deterministic protocols, so w_i are deterministic functions of w_1, \ldots, w_{i-1} .
- In general w_i ∈ {0,1}*, but we will consider w_i ∈ {0,1}, by stretching interaction by a factor of 2.
- In general, length could be variable. But we will consider fixed length *k*.

Noisy interactive coding:

- w_i is received as w'_i . For α fraction of the communication, i.e. αn total errors (can consider adversarial or random errors).
- Without correction: Immediately changes all future messages & so entire interaction can change (recall: chess example).
- Attempt 1: Standard Error correction in every round. Adversary can change $E(w_i)$ to $E(w'_i)$ and get same effect. Can work in random error model with $O(\log n)$ blow up in communication.
- Need better solution!

Solution Concept: Interactive Coding with α -fraction errors.

- $(\Pi_A, \Pi_B) \mapsto ((\sigma_A, f_A), (\sigma_B, f_B))$
- For every sequence of a_1, a_2, \ldots, a_n and b_1, \ldots, b_n s.t.
 - $a_i = \sigma_A^{(i)}(a_1, ..., a_{i-1})$ for odd *i*. - $b_i = \sigma_B^{(i)}(b_1, ..., b_{i-1})$ for even *i*. - # { $i : a_i \neq b_i$ } $\leq \alpha n$.

it holds that $f_A(a_1, ..., a_n) = f_B(b_1, ..., b_n) = w_1, ..., w_k = \text{Output}(\Pi_A, \Pi_B)$. Here $(a_1, ..., a_n)$ is Alice's version of the transcript; $(b_1, ..., b_n)$ is Bob's version.

• Note that σ_A and σ_B are possibly acting on different strings!

Tree Codes

Defn: $T : [d]^n \to [q]^n$ is a (d, q, δ) -tree code if

- $T(m_1, \ldots, m_n)_i$ depends only on m_1, \ldots, m_i . Thus, another way to interpret *T* is using label $L : [d]^{\leq n} \rightarrow [q]$, and $T(m_1, \ldots, m_n) = L(m_1) \circ L(m_1, m_2) \circ \cdots \circ L(m_1, \ldots, m_{n-1})$. (Figure: Labelling arcs of a *d*-ary tree.)
- For any m_1, \ldots, m_n and m'_1, \ldots, m'_n such that $m_1 = m'_1, \ldots, m_i = m'_i$ and $m_{i+1} \neq m'_{i+1}$, it holds,

 $\Delta(T(m_1,\ldots,m_n),T(m'_1,\ldots,m'_n)) \geq \delta(n-i)$

Note that prefix necessarily agrees.

- *Remark:* This is unlike regular coding theory where $[q]^k \rightarrow [q]^n$. We want *n* coordinates of input as well. We compensate by making output alphabet larger.
- Allows, decoding as long all suffixes have small fraction of errors. If $(s_1, \ldots, s_i) = T(m_1, \ldots, m_i)$, suppose r_1, \ldots, r_i is such that $\Delta((s_{j+1}, \ldots, s_i), (r_{j+1}, \ldots, r_i)) \ge \delta(i-j)/2$ for all j, then $D(r_1, \ldots, r_i) = (m_1, \ldots, m_i)$.

Alternately, suppose $(s_1, \ldots, s_i) = T(m_1, \ldots, m_i)$, suppose r_1, \ldots, r_i decodes to m'_1, \ldots, m'_i where $m_1 = m'_1, \ldots, m_j = m'_j$, but $m_{j+1} \neq m'_{j+1}$. Then, $\Delta((s_{j+1}, \ldots, s_i), (r_{j+1}, \ldots, r_i)) \geq \delta(i-j)/2$.

Tree codes exist!

- Random "tree" functions fail with high probability (close to 1, in fact).
- Random linear code works!

$$T(m) = \begin{bmatrix} m_1 & \cdots & m_n \end{bmatrix} \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ & a_1 & \cdots & a_{n-1} \\ & & \ddots & \vdots \\ & & & & a_1 \end{bmatrix}$$

we interpret $a_i \in \mathbb{F}_q$ and $m_i \in [d] \subseteq \mathbb{F}_q$. That is, $T(m)_1 = a_1 m_1$ $T(m)_2 = a_2 m_1 + a_1 m_2$ \cdots $T(m)_i = a_i m_1 + a_{i-1} m_2 + \cdots + a_1 m_i$.

• Proof sketch: For any m_1, \ldots, m_j and m'_1, \ldots, m'_j , such that $m_1 \neq m'_1$, the event of $T(\mathbf{m})_i \neq T(\mathbf{m}')_i$ happens with probability 1 - 1/q and is independent for different *i*.

Only depends on $(m_1 - m'_1), \ldots, (m_j - m'_j)$. Union bound over different d^j different path differences of length *j*. Automatically handles all pairs of paths, which diverge in the last *j* positions.

Using Tree Codes

Two approaches:

- Schulman : "Local" approach. More natural, but weaker analysis.
- Braverman-Rao : "Holistic" approach. Less natural, but less wasteful (provably).

Common features:

- Alice and Bob maintain states $S_A^{(i)}$ and $S_B^{(i)}$ for $i = 1, \dots, N$ for some N = O(n).
- Sequence of states $S_A^{(1)}, \ldots, S_A^{(t)}$ compressed into $x^{(1)}, \ldots, x^{(t)}$ in a prefix respecting way.
- On moving to state $S_A^{(t+1)}$, communicate $L(x^{(1)}, \ldots, x^{(t+1)})$ to Bob.

Differences:

- Description of state?
- What kinds of transitions are possible?
- Rules for the transitions?
- Analysis? How many fraction of errors tolerated?

Pre-processing for Schulman's protocol:

- Alice and Bob exchange only 1 bit in each round simultaneously. (can be done with another factor 2 blow up). This makes the situation symmetric w.r.t. Alice and Bob.
- Protocol communicates fixed *n* bits in total (where *n* is known to Alice and Bob). They extend the protocol up to O(n) rounds by transmitting 0's after the end.

Schulman's protocol preliminaries:

- Original protocol is a 4-ary tree, where in each round Alice and Bob exchange 1 bit each.
- $S_A^{(i)}$ is the node reached in Π , after *i* rounds.
- Evolution will be such that $S_A^{(i)} \in S_A^{(i-1)} + \{00, 01, 10, 11, H, B\}.$
- $x_A^{(i)}$ is the transition made in going from $S_A^{(i-1)}$ to $S_A^{(i)}$, in addition to the next bit to be sent by Alice.
- Communicate $L(x_A^{(1)}, ..., x_A^{(i)})$ to Bob. Note that d = 12, since $x_A^{(i)} \in \{00, 01, 10, 11, H, B\} \times \{0, 1\}$.

Actual protocol:

- Initial state $S_A^{(1)}$ is at root. $x_A^{(1)} = (H, a_1)$.
- Repeat N = O(n) times. In iteration *i*:
 - Transmit $L(x_A^{(1)}, \ldots, x_A^{(i)})$ to Bob.

- Given received sequence from Bob, obtain $\overline{y}_B^{(1)}, \ldots, \overline{y}_B^{(i)}$ (this is Alice's guess for $y_B^{(1)}, \ldots, y_B^{(i)}$).
- Compute $\overline{S}_{B}^{(i)}$ and the next bit b_i that Bob sent.
- Depending on relation between $S_A^{(i)}$ and $S_B^{(i)}$, do
 - * If $S_A^{(i)} = \overline{S}_B^{(i)}$, then move $S_A^{(i)}$ to child given by (a_i, b_i) . In this case $x_A^{(i+1)} = ((a_i, b_i), a_{i+1})$. * If $S_A^{(i)}$ is ancestor of $\overline{S}_B^{(i)}$, then hold. In this case, $x_A^{(i+1)} = (H, a_i)$.
 - * If $\overline{S}_B^{(i)}$ is ancestor of $S_A^{(i)}$, then back up one step. In this case $x_A^{(i+1)} = (B, a')$, where a' is the bit sent by Alice at the parent of $S_A^{(i)}$.

Analysis:

- Let the true states of Alice and Bob be S_A and S_B at time *i*. Let *S* be the least common ancestor of S_A or S_B .
- Define potential $\Phi(i) = \operatorname{depth}(S) \max \{\operatorname{depth}(S_A) \operatorname{depth}(S), \operatorname{depth}(S_B) \operatorname{depth}(S)\}$. This is depth of *S* minus the distance from *S* to the further of S_A and S_B .
- Define good round as one where both Alice and Bob decode the entire history of x_A and y_B correctly.
- In good round, potential increases by 1. In bad round, potential decreases by at most 3.
- If N_g (resp. N_b) is number of good rounds (resp. bad rounds).
- Then $\Phi(N) \ge N_g 3N_b = N 4N_b$.
- Key Lemma (about tree codes): Let *T* be a tree code of distance 0.7 (i.e. $\geq 2/3$). Suppose $(s_1, \ldots, s_n) = T(m_1, \ldots, m_n)$. Let (r_1, \ldots, r_n) be such that $\Delta(\mathbf{s}, \mathbf{r}) = \beta n$. Let *I* be the set of coordinates such that $D(r_1, \ldots, r_i) \neq (m_1, \ldots, m_i)$. Then, $|I| \leq 3\beta n$.

Proof. If an error happens on coordinate *i*, include *i* in *I*. Additionally, include 2 more coordinates after that in *I* as *potentially bad*. If there are errors on the coordinates that were intended to be included in *I*, then include coordinates after that. Every coordinate not in *I* has the property that every suffix has at most 1/3 fraction of errors. Hence, every unmarked node is decoded correctly. Hence $|I| \leq 3\beta n$.

Remark: If we choose a tree code of distance $1 - \varepsilon$, then we can generalize to saying that $|I| \le (2\beta/(1-\varepsilon)) \cdot n$.

- Finally, finishing the proof. Say $\beta_A N$ of Alice's messages are corrupted, and $\beta_B N$ of Bob's messages are corrupted. Note, that overall error fraction is $\beta = (\beta_A + \beta_B)/2$. From lemma, there are at most $(3\beta_A)N$ rounds where Bob decodes incorrectly; $(3\beta_B)N$ rounds where Alice decodes incorrectly. So, at most $(3(\beta_A + \beta_B))N = (6\beta)N$ rounds in which at least one party decodes incorrectly.
- Thus, $N_b \leq 6\beta N$. Thus, potential Φ at the end is at least $N(1 24\beta)$.
- Suppose $\beta = 1/48$. Then, potential Φ at the end is at least N/2. That is, choose N > 2n.

- Suppose $\beta = 1/24 \varepsilon$, then potential is at least $24\varepsilon N$. That is, choose $N > n/24\varepsilon$.
- Can be further improved to $1/16 \varepsilon'$ by using tree codes with distance 1ε . (Needs to be checked: Schulman showed an error correction of 1/240.)

Summary of Schulman's solution:

- Corrects $\Omega(1)$ fraction errors.
- Not maximal fraction?
- Tree codes exist. But constructive? Decoding is brute force.
- Weakness: Progress is made only when entire transcript is decoded correctly. Moreover, 3x negative progress is made otherwise. Can we avoid the negative progress?

Current state of the art:

- Exact capacity (even with random errors) unknown.
- Maximal fraction of errors? Essentially known [Braverman-Rao].
- Maximal error fraction over binary alphabet?
- Known if adversary has separate budget for Alice and Bob corruptions.
- Rate as error goes to 0. Essentially known. Rate $\approx 1 \widetilde{O}(\sqrt{\epsilon})$. [Kol-Raz], [Haeupler]. In contrast to one-way communication where rate is $1 \widetilde{O}(\epsilon)$.
- Polynomial time encoding + decoding: essentially known [Brakerski-Kalai], while losing out on errors tolerated.

Interactive Coding - Lecture 2