
Interactive Coding - Lecture 1

Challenge: Can you preserve an interaction when channel is (adversarially/randomly) noisy?

Example: Two players playing online chess over noisy channel.

Interaction:

• Two players A and B.

• Alice has a collection of functions ΠA =
{

Π(i)
A

}
. Similarly, Bob has ΠB.

• Π(i)
A :

(
{0, 1}∗

)i−1 → {0, 1}∗ ∪ {⊥} for odd i.

• Π(i)
B :

(
{0, 1}∗

)i−1 → {0, 1}∗ ∪ {⊥} for even i.

• Π(i)
A (w1, . . . , wi−1) specifies what Alice would say in round i after history of transcript w1, . . . , wi−1.

• Π(k)
A (w1, . . . , wi−1) = ⊥ means end of interaction. Output of the interaction is the entire

transcript w1, . . . , wk.

• We’ll consider deterministic protocols, so wi are deterministic functions of w1, . . . , wi−1.

• In general wi ∈ {0, 1}∗, but we will consider wi ∈ {0, 1}, by stretching interaction by a factor
of 2.

• In general, length could be variable. But we will consider fixed length k.

Noisy interactive coding:

• wi is received as w′i. For α fraction of the communication, i.e. αn total errors (can consider
adversarial or random errors).

• Without correction: Immediately changes all future messages & so entire interaction can
change (recall: chess example).

• Attempt 1: Standard Error correction in every round. Adversary can change E(wi) to E(w′i)
and get same effect. Can work in random error model with O(log n) blow up in communica-
tion.

• Need better solution!

Solution Concept: Interactive Coding with α-fraction errors.

• (ΠA, ΠB) 7→ ((σA, fA), (σB, fB))

• For every sequence of a1, a2, . . . , an and b1, . . . , bn s.t.

– ai = σ
(i)
A (a1, . . . , ai−1) for odd i.

– bi = σ
(i)
B (b1, . . . , bi−1) for even i.

– # {i : ai 6= bi} ≤ αn.

it holds that fA(a1, . . . , an) = fB(b1, . . . , bn) = w1, . . . , wk = Output(ΠA, ΠB).
Here (a1, . . . , an) is Alice’s version of the transcript; (b1, . . . , bn) is Bob’s version.

• Note that σA and σB are possibly acting on different strings!

1

Tree Codes

Defn: T : [d]n → [q]n is a (d, q, δ)-tree code if

• T(m1, . . . , mn)i depends only on m1, . . . , mi.
Thus, another way to interpret T is using label L : [d]≤n → [q],
and T(m1, . . . , mn) = L(m1) ◦ L(m1, m2) ◦ · · · ◦ L(m1, . . . , mn−1).
(Figure: Labelling arcs of a d-ary tree.)

• For any m1, . . . , mn and m′1, . . . , m′n such that m1 = m′1, . . . , mi = m′i and mi+1 6= m′i+1, it holds,

∆(T(m1, . . . , mn), T(m′1, . . . , m′n)) ≥ δ(n− i)

Note that prefix necessarily agrees.

• Remark: This is unlike regular coding theory where [q]k → [q]n. We want n coordinates of
input as well. We compensate by making output alphabet larger.

• Allows, decoding as long all suffixes have small fraction of errors. If (s1, . . . , si) = T(m1, . . . , mi),
suppose r1, . . . , ri is such that ∆((sj+1, . . . , si), (rj+1, . . . , ri)) ≥ δ(i− j)/2 for all j, then D(r1, . . . , ri) =
(m1, . . . , mi).

Alternately, suppose (s1, . . . , si) = T(m1, . . . , mi), suppose r1, . . . , ri decodes to m′1, . . . , m′i
where m1 = m′1, . . . , mj = m′j, but mj+1 6= m′j+1. Then, ∆((sj+1, . . . , si), (rj+1, . . . , ri)) ≥
δ(i− j)/2.

Tree codes exist!

• Random “tree” functions fail with high probability (close to 1, in fact).

• Random linear code works!

T(m) =
[
m1 · · · mn

]

a1 a2 · · · an
a1 · · · an−1

.
a1

we interpret ai ∈ Fq and mi ∈ [d] ⊆ Fq. That is,
T(m)1 = a1m1
T(m)2 = a2m1 + a1m2
· · ·
T(m)i = aim1 + ai−1m2 + · · ·+ a1mi.

• Proof sketch: For any m1, . . . , mj and m′1, . . . , m′j, such that m1 6= m′1, the event of T(m)i 6=
T(m′)i happens with probability 1− 1/q and is independent for different i.

Only depends on (m1 − m′1), . . . , (mj − m′j). Union bound over different dj different path
differences of length j. Automatically handles all pairs of paths, which diverge in the last j
positions.

2

Using Tree Codes

Two approaches:

• Schulman : “Local” approach. More natural, but weaker analysis.

• Braverman-Rao : “Holistic” approach. Less natural, but less wasteful (provably).

Common features:

• Alice and Bob maintain states S(i)
A and S(i)

B for i = 1, · · · , N for some N = O(n).

• Sequence of states S(1)
A , . . . , S(t)

A compressed into x(1), . . . , x(t) in a prefix respecting way.

• On moving to state S(t+1)
A , communicate L(x(1), . . . , x(t+1)) to Bob.

Differences:

• Description of state?

• What kinds of transitions are possible?

• Rules for the transitions?

• Analysis? How many fraction of errors tolerated?

Pre-processing for Schulman’s protocol:

• Alice and Bob exchange only 1 bit in each round simultaneously. (can be done with another
factor 2 blow up). This makes the situation symmetric w.r.t. Alice and Bob.

• Protocol communicates fixed n bits in total (where n is known to Alice and Bob). They extend
the protocol up to O(n) rounds by transmitting 0’s after the end.

Schulman’s protocol preliminaries:

• Original protocol is a 4-ary tree, where in each round Alice and Bob exchange 1 bit each.

• S(i)
A is the node reached in Π, after i rounds.

• Evolution will be such that S(i)
A ∈ S(i−1)

A + {00, 01, 10, 11, H, B}.

• x(i)A is the transition made in going from S(i−1)
A to S(i)

A , in addition to the next bit to be sent by
Alice.

• Communicate L(x(1)A , . . . , x(i)A) to Bob.

Note that d = 12, since x(i)A ∈ {00, 01, 10, 11, H, B} × {0, 1}.

Actual protocol:

• Initial state S(1)
A is at root. x(1)A = (H, a1).

• Repeat N = O(n) times. In iteration i:

– Transmit L(x(1)A , . . . , x(i)A) to Bob.

3

– Given received sequence from Bob, obtain y(1)B , . . . , y(i)B (this is Alice’s guess for y(1)B , . . . , y(i)B).

– Compute S(i)
B and the next bit bi that Bob sent.

– Depending on relation between S(i)
A and S(i)

B , do

∗ If S(i)
A = S(i)

B , then move S(i)
A to child given by (ai, bi). In this case x(i+1)

A = ((ai, bi), ai+1).

∗ If S(i)
A is ancestor of S(i)

B , then hold. In this case, x(i+1)
A = (H, ai).

∗ If S(i)
B is ancestor of S(i)

A , then back up one step. In this case x(i+1)
A = (B, a′), where a′

is the bit sent by Alice at the parent of S(i)
A .

Analysis:

• Let the true states of Alice and Bob be SA and SB at time i. Let S be the least common ancestor
of SA or SB.

• Define potential Φ(i) = depth(S) − max {depth(SA)− depth(S), depth(SB)− depth(S)}.
This is depth of S minus the distance from S to the further of SA and SB.

• Define good round as one where both Alice and Bob decode the entire history of xA and yB
correctly.

• In good round, potential increases by 1. In bad round, potential decreases by at most 3.

• If Ng (resp. Nb) is number of good rounds (resp. bad rounds).

• Then Φ(N) ≥ Ng − 3Nb = N − 4Nb.

• Key Lemma (about tree codes): Let T be a tree code of distance 0.7 (i.e. ≥ 2/3). Suppose
(s1, . . . , sn) = T(m1, . . . , mn). Let (r1, . . . , rn) be such that ∆(s, r) = βn. Let I be the set of
coordinates such that D(r1, . . . , ri) 6= (m1, . . . , mi). Then, |I| ≤ 3βn.

Proof. If an error happens on coordinate i, include i in I. Additionally, include 2 more coordi-
nates after that in I as potentially bad. If there are errors on the coordinates that were intended
to be included in I, then include coordinates after that. Every coordinate not in I has the
property that every suffix has at most 1/3 fraction of errors. Hence, every unmarked node is
decoded correctly. Hence |I| ≤ 3βn.

Remark: If we choose a tree code of distance 1 − ε, then we can generalize to saying that
|I| ≤ (2β/(1− ε)) · n.

• Finally, finishing the proof. Say βAN of Alice’s messages are corrupted, and βBN of Bob’s
messages are corrupted. Note, that overall error fraction is β = (βA + βB)/2. From lemma,
there are at most (3βA)N rounds where Bob decodes incorrectly; (3βB)N rounds where Alice
decodes incorrectly. So, at most (3(βA + βB))N = (6β)N rounds in which at least one party
decodes incorrectly.

• Thus, Nb ≤ 6βN. Thus, potential Φ at the end is at least N(1− 24β).

• Suppose β = 1/48. Then, potential Φ at the end is at least N/2. That is, choose N > 2n.

4

• Suppose β = 1/24− ε, then potential is at least 24εN. That is, choose N > n/24ε.

• Can be further improved to 1/16− ε′ by using tree codes with distance 1− ε.
(Needs to be checked: Schulman showed an error correction of 1/240.)

Summary of Schulman’s solution:

• Corrects Ω(1) fraction errors.

• Not maximal fraction?

• Tree codes exist. But constructive? Decoding is brute force.

• Weakness: Progress is made only when entire transcript is decoded correctly. Moreover, 3x
negative progress is made otherwise. Can we avoid the negative progress?

Current state of the art:

• Exact capacity (even with random errors) unknown.

• Maximal fraction of errors? Essentially known [Braverman-Rao].

• Maximal error fraction over binary alphabet?

• Known if adversary has separate budget for Alice and Bob corruptions.

• Rate as error goes to 0. Essentially known. Rate ≈ 1− Õ(
√

ε). [Kol-Raz], [Haeupler].
In contrast to one-way communication where rate is 1− Õ(ε).

• Polynomial time encoding + decoding: essentially known [Brakerski-Kalai], while losing out
on errors tolerated.

Interactive Coding - Lecture 2

5

