Interactive Coding - Lecture 1

Challenge: Can you preserve an interaction when channel is (adversarially/randomly) noisy?
Example: Two players playing online chess over noisy channel.
Interaction:

- Two players A and B.
- Alice has a collection of functions $\Pi_{A}=\left\{\Pi_{A}^{(i)}\right\}$. Similarly, Bob has Π_{B}.
- $\Pi_{A}^{(i)}:\left(\{0,1\}^{*}\right)^{i-1} \rightarrow\{0,1\}^{*} \cup\{\perp\}$ for odd i.
- $\Pi_{B}^{(i)}:\left(\{0,1\}^{*}\right)^{i-1} \rightarrow\{0,1\}^{*} \cup\{\perp\}$ for even i.
- $\Pi_{A}^{(i)}\left(w_{1}, \ldots, w_{i-1}\right)$ specifies what Alice would say in round i after history of transcript w_{1}, \ldots, w_{i-1}.
- $\Pi_{A}^{(k)}\left(w_{1}, \ldots, w_{i-1}\right)=\perp$ means end of interaction. Output of the interaction is the entire transcript w_{1}, \ldots, w_{k}.
- We'll consider deterministic protocols, so w_{i} are deterministic functions of w_{1}, \ldots, w_{i-1}.
- In general $w_{i} \in\{0,1\}^{*}$, but we will consider $w_{i} \in\{0,1\}$, by stretching interaction by a factor of 2 .
- In general, length could be variable. But we will consider fixed length k.

Noisy interactive coding:

- w_{i} is received as w_{i}^{\prime}. For α fraction of the communication, i.e. αn total errors (can consider adversarial or random errors).
- Without correction: Immediately changes all future messages \& so entire interaction can change (recall: chess example).
- Attempt 1: Standard Error correction in every round. Adversary can change $E\left(w_{i}\right)$ to $E\left(w_{i}^{\prime}\right)$ and get same effect. Can work in random error model with $O(\log n)$ blow up in communication.
- Need better solution!

Solution Concept: Interactive Coding with α-fraction errors.

- $\left(\Pi_{A}, \Pi_{B}\right) \mapsto\left(\left(\sigma_{A}, f_{A}\right),\left(\sigma_{B}, f_{B}\right)\right)$
- For every sequence of $a_{1}, a_{2}, \ldots, a_{n}$ and b_{1}, \ldots, b_{n} s.t.

$$
\begin{aligned}
& -a_{i}=\sigma_{A}^{(i)}\left(a_{1}, \ldots, a_{i-1}\right) \text { for odd } i \\
& -b_{i}=\sigma_{B}^{(i)}\left(b_{1}, \ldots, b_{i-1}\right) \text { for even } i . \\
& -\#\left\{i: a_{i} \neq b_{i}\right\} \leq \alpha n
\end{aligned}
$$

it holds that $f_{A}\left(a_{1}, \ldots, a_{n}\right)=f_{B}\left(b_{1}, \ldots, b_{n}\right)=w_{1}, \ldots, w_{k}=\operatorname{Output}\left(\Pi_{A}, \Pi_{B}\right)$.
Here $\left(a_{1}, \ldots, a_{n}\right)$ is Alice's version of the transcript; $\left(b_{1}, \ldots, b_{n}\right)$ is Bob's version.

- Note that σ_{A} and σ_{B} are possibly acting on different strings!

Tree Codes

Defn: $T:[d]^{n} \rightarrow[q]^{n}$ is a (d, q, δ)-tree code if

- $T\left(m_{1}, \ldots, m_{n}\right)_{i}$ depends only on m_{1}, \ldots, m_{i}.

Thus, another way to interpret T is using label $L:[d] \leq n \rightarrow[q]$,
and $T\left(m_{1}, \ldots, m_{n}\right)=L\left(m_{1}\right) \circ L\left(m_{1}, m_{2}\right) \circ \cdots \circ L\left(m_{1}, \ldots, m_{n-1}\right)$.
(Figure: Labelling arcs of a d-ary tree.)

- For any m_{1}, \ldots, m_{n} and $m_{1}^{\prime}, \ldots, m_{n}^{\prime}$ such that $m_{1}=m_{1}^{\prime}, \ldots, m_{i}=m_{i}^{\prime}$ and $m_{i+1} \neq m_{i+1}^{\prime}$, it holds,

$$
\Delta\left(T\left(m_{1}, \ldots, m_{n}\right), T\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)\right) \geq \delta(n-i)
$$

Note that prefix necessarily agrees.

- Remark: This is unlike regular coding theory where $[q]^{k} \rightarrow[q]^{n}$. We want n coordinates of input as well. We compensate by making output alphabet larger.
- Allows, decoding as long all suffixes have small fraction of errors. If $\left(s_{1}, \ldots, s_{i}\right)=T\left(m_{1}, \ldots, m_{i}\right)$, suppose r_{1}, \ldots, r_{i} is such that $\Delta\left(\left(s_{j+1}, \ldots, s_{i}\right),\left(r_{j+1}, \ldots, r_{i}\right)\right) \geq \delta(i-j) / 2$ for all j, then $D\left(r_{1}, \ldots, r_{i}\right)=$ $\left(m_{1}, \ldots, m_{i}\right)$.
Alternately, suppose $\left(s_{1}, \ldots, s_{i}\right)=T\left(m_{1}, \ldots, m_{i}\right)$, suppose r_{1}, \ldots, r_{i} decodes to $m_{1}^{\prime}, \ldots, m_{i}^{\prime}$ where $m_{1}=m_{1}^{\prime}, \ldots, m_{j}=m_{j}^{\prime}$, but $m_{j+1} \neq m_{j+1}^{\prime}$. Then, $\Delta\left(\left(s_{j+1}, \ldots, s_{i}\right),\left(r_{j+1}, \ldots, r_{i}\right)\right) \geq$ $\delta(i-j) / 2$.

Tree codes exist!

- Random "tree" functions fail with high probability (close to 1 , in fact).
- Random linear code works!

$$
T(m)=\left[\begin{array}{lll}
m_{1} & \cdots & m_{n}
\end{array}\right]\left[\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
& a_{1} & \cdots & a_{n-1} \\
& & \ddots & \vdots \\
& & & a_{1}
\end{array}\right]
$$

we interpret $a_{i} \in \mathbb{F}_{q}$ and $m_{i} \in[d] \subseteq \mathbb{F}_{q}$. That is,
$T(m)_{1}=a_{1} m_{1}$
$T(m)_{2}=a_{2} m_{1}+a_{1} m_{2}$
$T(m)_{i}=a_{i} m_{1}+a_{i-1} m_{2}+\cdots+a_{1} m_{i}$.

- Proof sketch: For any m_{1}, \ldots, m_{j} and $m_{1}^{\prime}, \ldots, m_{j}^{\prime}$, such that $m_{1} \neq m_{1}^{\prime}$, the event of $T(\mathbf{m})_{i} \neq$ $T\left(\mathbf{m}^{\prime}\right)_{i}$ happens with probability $1-1 / q$ and is independent for different i.
Only depends on $\left(m_{1}-m_{1}^{\prime}\right), \ldots,\left(m_{j}-m_{j}^{\prime}\right)$. Union bound over different d^{j} different path differences of length j. Automatically handles all pairs of paths, which diverge in the last j positions.

Using Tree Codes

Two approaches:

- Schulman : "Local" approach. More natural, but weaker analysis.
- Braverman-Rao : "Holistic" approach. Less natural, but less wasteful (provably).

Common features:

- Alice and Bob maintain states $S_{A}^{(i)}$ and $S_{B}^{(i)}$ for $i=1, \cdots, N$ for some $N=O(n)$.
- Sequence of states $S_{A}^{(1)}, \ldots, S_{A}^{(t)}$ compressed into $x^{(1)}, \ldots, x^{(t)}$ in a prefix respecting way.
- On moving to state $S_{A}^{(t+1)}$, communicate $L\left(x^{(1)}, \ldots, x^{(t+1)}\right)$ to Bob.

Differences:

- Description of state?
- What kinds of transitions are possible?
- Rules for the transitions?
- Analysis? How many fraction of errors tolerated?

Pre-processing for Schulman's protocol:

- Alice and Bob exchange only 1 bit in each round simultaneously. (can be done with another factor 2 blow up). This makes the situation symmetric w.r.t. Alice and Bob.
- Protocol communicates fixed n bits in total (where n is known to Alice and Bob). They extend the protocol up to $O(n)$ rounds by transmitting 0 's after the end.

Schulman's protocol preliminaries:

- Original protocol is a 4-ary tree, where in each round Alice and Bob exchange 1 bit each.
- $S_{A}^{(i)}$ is the node reached in Π, after i rounds.
- Evolution will be such that $S_{A}^{(i)} \in S_{A}^{(i-1)}+\{00,01,10,11, H, B\}$.
- $x_{A}^{(i)}$ is the transition made in going from $S_{A}^{(i-1)}$ to $S_{A}^{(i)}$, in addition to the next bit to be sent by Alice.
- Communicate $L\left(x_{A}^{(1)}, \ldots, x_{A}^{(i)}\right)$ to Bob.

Note that $d=12$, since $x_{A}^{(i)} \in\{00,01,10,11, H, B\} \times\{0,1\}$.
Actual protocol:

- Initial state $S_{A}^{(1)}$ is at root. $x_{A}^{(1)}=\left(H, a_{1}\right)$.
- Repeat $N=O(n)$ times. In iteration i :
- Transmit $L\left(x_{A}^{(1)}, \ldots, x_{A}^{(i)}\right)$ to Bob.
- Given received sequence from Bob, obtain $\bar{y}_{B}^{(1)}, \ldots, \bar{y}_{B}^{(i)}$ (this is Alice's guess for $y_{B}^{(1)}, \ldots, y_{B}^{(i)}$).
- Compute $\bar{S}_{B}^{(i)}$ and the next bit b_{i} that Bob sent.
- Depending on relation between $S_{A}^{(i)}$ and $S_{B}^{(i)}$, do
* If $S_{A}^{(i)}=\bar{S}_{B}^{(i)}$, then move $S_{A}^{(i)}$ to child given by $\left(a_{i}, b_{i}\right)$. In this case $x_{A}^{(i+1)}=\left(\left(a_{i}, b_{i}\right), a_{i+1}\right)$.
* If $S_{A}^{(i)}$ is ancestor of $\bar{S}_{B}^{(i)}$, then hold. In this case, $x_{A}^{(i+1)}=\left(H, a_{i}\right)$.
* If $\bar{S}_{B}^{(i)}$ is ancestor of $S_{A}^{(i)}$, then back up one step. In this case $x_{A}^{(i+1)}=\left(B, a^{\prime}\right)$, where a^{\prime} is the bit sent by Alice at the parent of $S_{A}^{(i)}$.

Analysis:

- Let the true states of Alice and Bob be S_{A} and S_{B} at time i. Let S be the least common ancestor of S_{A} or S_{B}.
- Define potential $\Phi(i)=\operatorname{depth}(S)-\max \left\{\operatorname{depth}\left(S_{A}\right)-\operatorname{depth}(S), \operatorname{depth}\left(S_{B}\right)-\operatorname{depth}(S)\right\}$. This is depth of S minus the distance from S to the further of S_{A} and S_{B}.
- Define good round as one where both Alice and Bob decode the entire history of x_{A} and y_{B} correctly.
- In good round, potential increases by 1. In bad round, potential decreases by at most 3 .
- If N_{g} (resp. N_{b}) is number of good rounds (resp. bad rounds).
- Then $\Phi(N) \geq N_{g}-3 N_{b}=N-4 N_{b}$.
- Key Lemma (about tree codes): Let T be a tree code of distance 0.7 (i.e. $\geq 2 / 3$). Suppose $\left(s_{1}, \ldots, s_{n}\right)=T\left(m_{1}, \ldots, m_{n}\right)$. Let $\left(r_{1}, \ldots, r_{n}\right)$ be such that $\Delta(\mathbf{s}, \mathbf{r})=\beta n$. Let I be the set of coordinates such that $D\left(r_{1}, \ldots, r_{i}\right) \neq\left(m_{1}, \ldots, m_{i}\right)$. Then, $|I| \leq 3 \beta n$.

Proof. If an error happens on coordinate i, include i in I. Additionally, include 2 more coordinates after that in I as potentially bad. If there are errors on the coordinates that were intended to be included in I, then include coordinates after that. Every coordinate not in I has the property that every suffix has at most $1 / 3$ fraction of errors. Hence, every unmarked node is decoded correctly. Hence $|I| \leq 3 \beta n$.

Remark: If we choose a tree code of distance $1-\varepsilon$, then we can generalize to saying that $|I| \leq(2 \beta /(1-\varepsilon)) \cdot n$.

- Finally, finishing the proof. Say $\beta_{A} N$ of Alice's messages are corrupted, and $\beta_{B} N$ of Bob's messages are corrupted. Note, that overall error fraction is $\beta=\left(\beta_{A}+\beta_{B}\right) / 2$. From lemma, there are at most $\left(3 \beta_{A}\right) N$ rounds where Bob decodes incorrectly; $\left(3 \beta_{B}\right) N$ rounds where Alice decodes incorrectly. So, at most $\left(3\left(\beta_{A}+\beta_{B}\right)\right) N=(6 \beta) N$ rounds in which at least one party decodes incorrectly.
- Thus, $N_{b} \leq 6 \beta N$. Thus, potential Φ at the end is at least $N(1-24 \beta)$.
- Suppose $\beta=1 / 48$. Then, potential Φ at the end is at least $N / 2$. That is, choose $N>2 n$.
- Suppose $\beta=1 / 24-\varepsilon$, then potential is at least $24 \varepsilon N$. That is, choose $N>n / 24 \varepsilon$.
- Can be further improved to $1 / 16-\varepsilon^{\prime}$ by using tree codes with distance $1-\varepsilon$. (Needs to be checked: Schulman showed an error correction of $1 / 240$.)

Summary of Schulman's solution:

- Corrects $\Omega(1)$ fraction errors.
- Not maximal fraction?
- Tree codes exist. But constructive? Decoding is brute force.
- Weakness: Progress is made only when entire transcript is decoded correctly. Moreover, $3 x$ negative progress is made otherwise. Can we avoid the negative progress?

Current state of the art:

- Exact capacity (even with random errors) unknown.
- Maximal fraction of errors? Essentially known [Braverman-Rao].
- Maximal error fraction over binary alphabet?
- Known if adversary has separate budget for Alice and Bob corruptions.
- Rate as error goes to 0 . Essentially known. Rate $\approx 1-\widetilde{O}(\sqrt{\varepsilon})$. [Kol-Raz], [Haeupler]. In contrast to one-way communication where rate is $1-\widetilde{O}(\varepsilon)$.
- Polynomial time encoding + decoding: essentially known [Brakerski-Kalai], while losing out on errors tolerated.

Interactive Coding - Lecture 2

