
Essential Coding Theory Madhu Sudan
CS 229r - Spring 2017
Due: Wednesday, February 22, 2017

Problem Set 2

Instructions

Collaboration: Collaboration is allowed and encouraged, but you must write everything up by
yourselves. You must list all your collaborators.

References: Consulting references is OK. However, in general, try not to run to reference material
to answer questions. Try to think about the problem to see if you can solve it without
consulting any external sources. If this fails, you may look up any reference material. Cite all
references (in addition to listing all collaborators). Explain why you needed to consult any
of the references, if you did consult any.

“Not to be turned in” Problems . If a problem is marked “not to be turned in”, you don’t
have to. But you must include a statement saying you know how to solve the problem. If
you are unsure, write up your solution and turn it in. These problems won’t count for your
grades, but are good review exercises.

Submission: Submit your solutions on Canvas. If you do not have a canvas account, or are not
taking this course for credit, but want to submit solutions to the psets anyway, please contact
me (madhu) right away and I’ll try to find a solution for you.

Problems

1. (Need not be turned in) (Finite field as vector spaces)

(a) Let q be a prime power and t be a positive integer and let Fqt be a field of size qt.
Show that there is a unique copy of Fq contained in Fqt , i.e., q elements that are closed
under addition and multiplication and this form a field. (This allows us to talk about
multiplication of an element of Fq with an element of Fqt below.)

(b) Show that there is a bijection Φ : Fqt → Ftq that is Fq-linear (i.e., for every α, β ∈ Fq ⊆ Fqt
and γ, δ ∈ Fqt it is the case that Φ(αγ + βδ) = αΦ(γ) + βΦ(δ)).

(c) Conclude that if C ⊆ Fnqt is a linear code over Fqt then C ◦Φ ⊆ Ftnq is a linear code over
Fq, where C ◦ Φ = {(Φ(u1), . . . ,Φ(un))|(u1, . . . , un) ∈ C}.

2. (GV bound by Partitioning) Recall that linear codes C1, . . . , CM ⊆ {0, 1}n form a partition if (i)
All codes are of the same size (soe |Ci| = |Cj | for all i, j ∈ [M ]); (ii) They cover {0, 1}n, i.e.,
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∪i∈[M ]Ci = {0, 1}n; and (iii) They have the minimal possible intersection i.e., Ci ∩Cj = {0n}
for all i 6= j.

(a) Prove that if C1, . . . , CM form a partition, and d is such that
∑d−1

i=1

(
n
i

)
< M then there

exists i ∈ [M ] such that ∆(Ci) ≥ d.

(b) (The Wozencraft ensemble): Let n = 2t, and let Φ be linear bijection from F2t to
Ft2. For α ∈ F2t let Cα ⊆ F2

2t be the code with codewords {(β, α · β)|β ∈ F2t} and

F∞ = {(0, β)|β ∈ F2t}. Further, let C̃α = Cα ◦ Φ. Show that {C̃α}α∈F2t∪{∞} ⊆ {0, 1}
n

form a partition. Conclude that for infinitely many n there is a code of length n with
rate 1/2 and relative distance approaching H−1(1/2).

(c) Prove that for most α, the code Cα has relative distance approaching H−1(1/2).

(d) Extend Part (b) to get codes of rate 1/` and distance approaching H−1(1 − 1/`) for
(constant) every positive integer `.

(e) (Extra credit:) Extend the notion of a partition to a notion of ‘uniform cover” so as to
build codes of rate 1− 1/` and distance H−1(1/`).

3. (q-ary Plotkin bound). The q-ary Plotkin bound says that if {Ci = (ni, ki, di)q} is an infinite
family of codes with ki/ni ≥ R and di/ni ≥ δ then R ≤ 1 − (q/(q − 1))δ. Your goal is to
prove this bound below.

(a) Prove that there exist vectors η1, . . . , ηq ∈ Rq−1 such that 〈ηi, ηj〉 = 1 if i = j and
−1/(q − 1) otherwise.

(b) Use the above to show that if c1, . . . , cK ∈ [q]n have pairwise distance at least (q−1)/q ·n,
then K ≤ 2(q − 1)n. (Conclude that if δ ≥ (q − 1)/q then R = 0.)

(c) Show that if there exists an (n, k, d)q code then there exists an (n− 1, k − 1, d)q code.

(d) Combine the above to infer the Plotkin bound.

4. (Need not be turned in.) (The Johnson bound.)

(a) Prove that if w, c1, . . . , cL ∈ {0, 1}n are words such that ∆(w, ci) ≤ τn and ∆(ci, cj) ≥ δn
for every i 6= j and τ = 1/2(1 −

√
1− 2δ) then L ≤ 2n. (Hint: You may use the

usual transformation to vectors in {−1,+1}n and convert statements about Hamming
distance into statements about inner products. Suppose the vector w is transformed
to W ∈ {−1,+1}n this way and vectors c1, . . . , cL to C1, . . . , CL. Show that under the
given condition on τ and δ, you can “shift” the origin to some point αW (for α ∈ [0, 1])
such that the from the new origin end points of the vectors C1, . . . , CL have pairwise
non-positive inner product.)

(b) Prove the q-version of the above.

(c) Prove that your bound on the relationship between τ and δ is tight.

5. (Concatenated codes and Justesen codes).

(a) Use the Wozencraft ensemble to construct, in time poly(n), binary codes of length n,
rate 1/4 of relative distance approaching 1/2(H−1(1/2)). (Your code should be linear
and your algorithm should construct the entire generator matrix in polynomial time.)
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(b) Now we will show that concatenating with an ensemble of codes also works almost as
well: Let C1, . . . , CN be (n, k, d)2 codes such that most (N − o(N)) codes have distance
d − o(d). Suppose B is in (N,K,D)2k code. Show that the concatenation of B with
(C1, . . . , CN ), which is obtained by encoding a message of B by the encoder of B, and
then encoding the ith symbol of the encoding by the encoder for Ci, is a code of distance
D · d− o(N · d).

(c) Conclude that there is a strongly explicit code, one which has a generator matrix G =
[Gij ] with Gij being computable in time poly log(n) given i and j, of rate 1/4 with
relative distance approaching 1/2H−1(1/2).
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