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Lecture 2
Instructor: Madhu Sudan Scribes: Oxana Poburinnaya

This lecture covers a paper by Shannon [Sha48] from 1948. Shannon studied the possibility of efficient
transmission of information over a noisy channel. For instance, can we communicate reliably, if each bit of
the message is flipped with 10% probability? What about 50%? 49%? What rate can we achieve in this
setting?

1 Compression and error-correcting.

Besides error-correcting, Shannon was also concerned about compressing the message. For instance, if we
need to send a stream of pictures which are very similar (e.g. pictures of the same part of the sky from a
satellite), it makes sense to send the picture only once, and then transmit changes rather than the whole
picture. Thus, Shannon modeled the process as follows:

1. The message m is processed by an encoder, which compressed it and adds redundancy for error-
correcting;

2. The resulting codeword x is sent over a noisy channel, resulting in a possibly different x̂;

3. The receiver applies the decoding procedure (which decompresses the message and corrects errors) and
obtains some m̂; the hope is to design encoding and decoding such that m = m̂ almost always.

Given that we often compress messages before sending them, why does it make sense to design stand-
alone error-correcting codes? Maybe if we design a code which compresses and does error-correcting at
the same time, we can achieve more? For instance, error-correction could possibly use the knowledge of a
compression procedure to be able to correct more errors. It turns out that such knowledge doesn’t give us
anything; therefore, it is reasonable to split the encoding (resp., decoding) into compression and encoding of
ECC (resp, decoding of ECC and decompression). This can be modeled as follows:

1. Original message M is given to compressor to produce a shorter m;

2. m is given to encoding algorithm of ECC to produce a codeword x;

3. x is sent over a noisy channel, resulting in a possibly different x̂;

4. x̂ is given to decoding algorithm of ECC which outputs m̂;

5. m̂ is given to decompression algorithm which outputs M̂ . Again, the hope is that M = M̂ almost
always.

Here the compression/decompression procedure doesn’t know anything about error-correcting; from its
point of view, M is compressed, sent over a noiseless channel, and then decompressed. Essentially, ECC
allows to emulate a noiseless channel.

2 Modeling noisy channels

In the previous lecture we saw one way to model noise in a channel: we assumed that no more than t errors
happen per codeword. Shannon instead considered a model where each bit of the codeword can be modified
independently of other bits. We describe several examples:
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Binary Symmetric Channel (BSC). Each bit is flipped with probability p ∈ (0, 12 ). Denoted as BSCp.

Binary Erasure Channel. Each bit is erased (i.e. replaced with a special symbol “?”) with probability
p ∈ (0, 12 ). This model is more benign, since positions of errors are known.

General case. Assume the codeword is a word in alphabet Σ, and the channel transforms each symbol
from Σ to some other symbol (in a possibly different alphabet Γ). To describe such a channel, it is enough
to define a matrix P with dimensions |Σ| × |Γ|, where pij is the probability that i-th symbol in Σ transforms
into j-th symbol in Γ (for a matrix to represent a noisy channel, it should be the case that Σjpij = 1 for all
i).

Note that a noisy channel can be viewed as a function which takes codewords as inputs and outputs
words of a possibly different alphabet.

3 Shannon’s coding theorem

Shannon’s theorem answer the following question: when is it possible to communicate reliably over a BSCp,
and how high the rate could be? Intuitively, when probability of error p is fairly small (say, .001), communi-
cation should be possible, and rate should be pretty high. When p = .5, any received codeword x̂ could be
the result of any sent codeword x, and therefore recovery is impossible. However, is recovery possible when
p = .499, even if this means that the rate has to be tiny? The answer to this question is not obvious.

Shannon Entropy. Shannon entropy H(p) is defined as p log 1
p + (1− p) log 1

1−p (all logarithms are base

2). In particular, when p is close to 0 or 1, entropy approaches 0; when p = 1
2 (which corresponds to a

uniformly random string), entropy is the highest (1).

Capacity of the channel. Capacity of BSCp is defined as 1 − H(p). Shannon theorem states that
reliable communication is possible, as long as capacity of the channel is non-zero (i.e. as long as p < 1

2 ):

Theorem 1 (Shannon’s Coding Theorem, informal). Reliable communication over BSCp is possible with
any rate below 1−H(p), and impossible with rate above 1−H(p).

Now let’s formalize this statement:

Theorem 2 (Shannon’s Coding Theorem). Let BSCp be a binary symmetric channel with error probability
p. Then

• ∀ε > 0 ∃δ > 0 such that ∀k, n, which satisfy k
n < 1 − H(p) − ε, there exists an encoding function

E : {0, 1}k → {0, 1}n and a decoding function D : {0, 1}n → {0, 1}k such that

Pr[D(BSCp(E(m))) 6= m] ≤ 2−δn.

• ∀ε > 0 ∃δ > 0 such that ∀k, n, which satisfy k
n > 1−H(p) + ε, for any encoding function E : {0, 1}k →

{0, 1}n and for any decoding function D : {0, 1}n → {0, 1}k,

Pr[D(BSCp(E(m))) = m] ≤ 2−δn.

Here probability is over the choice of m (uniformly at random from {0, 1}k) and over noise.

Before proving the theorem, we recall several useful lemmas:

Lemma 3. (Chernoff bound) Let x1, . . . , xn be i.i.d. random variables, such that each xi ∈ [0, 1]. Denote
E[xi] = µ. Then

Pr[|
∑
xi
n
− µ| ≥ ε] ≤ exp(−ε2n).
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Essentially, Chernoff bound says that the average of several random variables is very close to their mean
(except with negligible probability).

Lemma 4. Let p ∈ (0, 12 ). Then
(
n
pn

)
≈ 2H(p)n(1 + o(1)).

Exercise 1. Prove lemma 4.

Lemma 5. Let p ∈ (0, 12 ). Then volume V of the ball of radius pn in n-dimensional space is
pn∑
i=0

(
n
i

)
≈

O(2H(p)n).

Exercise 2. Prove lemma 5.
Now we are ready to prove Shannon’s theorem:

Proof. Set E to be a randomly chosen function from k bits to n bits. Let γ be a parameter, which depends
on ε and p and which we define later. We define a decoding function as follows: on input x̂ it goes over all
possible m and computes their encodings E(m). If there exists a unique m such that E(m) lies within a ball
with center x̂ and radius (p+ γ)n, then D(x̂) outputs this m. Else it outputs ⊥.

To show that this decoding is almost always correct, we need to show two things:

• that x̂ falls withing a ball with center x and radius (p+γ)n almost always. Intuitively, this holds since
corrupted codewords should be concentrated at distance pn from x, and as n grows, probability to be
sufficiently far away from x becomes small;

• that the ball with center x̂ and radius (p+ γ)n rarely contains a codeword of another message. Intu-
itively, this holds since the volume of this ball is small enough compared to the volume of the whole
space of codewords.

Now let’s give a formal proof. We will show that for our choice of E,D, probability of incorrect decoding
is exponentially small in n, where probability is taken over the choice of m, noise, and encoding function
E. This will imply that for at least one E the probability (over m and noise) is small, as claimed by the
theorem.

First let’s show that x̂ almost always falls into the ball. Let e be an error vector. We need to show that

∆(e) ≥ (p+γ)n with negligible probability1. By Chernoff bound, for any γ the probability that |
∑
ei
n −p| > γ

is at most exp(−γ2n); therefore ∆(e) ≥ (p+ γ)n with probability at most exp(−γ2n), as required.
Now let’s compute the probability that the ball contains a codeword for another m′ 6= m. Since E is a

random function, the probability that for some fixed m′ E(m′) hits the ball is V
2n (where V is the volume of

the ball), which is approximately 2H(p+γ)n2−n (lemma 5). Then, by union bound, the probability that there
exists m′ 6= m such that E(m′) hits the ball is at most 2k2H(p+γ)n2−n, which can be rewritten as follows:

2k2H(p+γ)n2−n = (2
k
n+H(p+γ)−1)n ≤ (21−H(p)−ε+H(p+γ)−1)n = (2−ε+H(p+γ)−H(p))n;

here we used that k
n ≤ 1−H(p)− ε. By setting γ sufficiently small, we can make H(p+ γ)−H(p) be at

most, say, ε
2 , and thus

(2−ε+H(p+γ)−H(p))n ≤ 2(−ε+
ε
2 )n = 2−

ε
2n.

Thus, probability of incorrect decryption is at most 2−
ε
2n + exp(−γ2n), which is exponentially small in

n, as required.

Note that both encoding and decoding algorithms constructed in the proof are quite inefficient (require
double exponential and exponential time).

We also give a proof sketch for the converse theorem:

1Here ∆(e) =
∑

ei is a Hamming weight of e.
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Proof. Let’s consider a bipartite graph with all messages on the left, all n-bit strings on the right, and each
message m connected to every n-bit string which is at distance exactly pn from E(m). Intuitively, each n-bit
string will be connected (i.e. at the same distance pn) to too many messages, making recovery impossible
(note that for any m E(m) could be transformed into any neighbor of m with the same probability, which
means that any n-bit string c contains no information about which one of all c’s neighbors was initially
encoded). Indeed, the degree of each m-node is

(
n
pn

)
≈ H(p)n(1+o(1)) (lemma 4), and therefore the number

of edges in the graph is 2k2H(p)n(1+o(1)), which is also the amount of all possible decoding attempts. However,
the amount of correct decodings is only 2n, and thus the fraction of correct decoding over all possible ones is

2n2−k2−H(p)n(1+o(1)) = (21−
k
n−H(p)(1+o(1)))n ≤ (21−1+H(p)−ε−H(p)(1+o(1)))n = (2−ε−H(p)o(1))n ≤ 2−

ε
2n,

for sufficiently large n.
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