
CS 229r Essential Coding Theory Feb 2, 2017

Lecture 4
Instructor: Madhu Sudan Scribes: Greg Yang

1 Constructivity

What do we mean by constructivity in coding theory? For example, we say that the Gilbert construction is
“nonconstructive” because finding the code takes exp(n) time.

Ideally, the encoding function E : {0, 1}k → {0, 1}n should be polytime for a “constructive” result. But
what if, say, we have a linear code, whose generator matrix requires exp(n) time to find, but the actually
matrix multiplication is polytime? Most people would agree this is “constructive.” In general, we could
have a nonuniform family of encoding functions Ei : {0, 1}ki → {0, 1}ni , each of which requires poly(ki) to
compute; another example would be nonuniform families of polysized circuits.

A refresher on notation: For a code E : Σk → Σn, the rateR is k
n . The distance ∆(E) = minu,v∈imE ∆(u, v)

is often written d. The relative distance δ of imE is d
n .

2 Positive Results

2.1 The GV bound

Last time we established the following Gilbert bound

Theorem 2.1 (Gilbert). There exists a parity check matrix H ∈ {0, 1}n×(n−k) such that

2k ≥ 2n/Vol(n, d− 1)

such that C := {y|yH = 0} has ∆C ≥ d.

This implies the corollary

Corollary 2.2 (GV bound). For the binary alphabet, the following is achievable:

R ≥ 1−H(δ)

Today we sketch the proof of the Varshamov bound, which slightly improves Theorem 2.1.

Theorem 2.3 (Varshamov). There exists a parity check matrix H ∈ {0, 1}n×(n−k) such that

2k ≥ 2n/Vol(n, d− 2)

such that C := {y|yH = 0} has ∆C ≥ d.

Proof sketch. Construct the parity check matrix greedily, row by row, such that no d − 1 rows are linearly
dependent. As long as 2n−k > Vol(n, d− 2), this is possible.

Exercise 1. Complete the proof above.

Like with the Gilbert bound, we recover Corollary 2.2
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2.2 Random construction

We can try constructing codes randomly, which will again recover Corollary 2.2 (asymptotically), by 1)
picking 2k+1 codewords at random from {0, 1}n, and 2) remove all nearby pairs of distance < d, of which
there are < 2k (exercise!). This is possible, asymptotically, for k

n → 1−H( dn ) approaching from below.
Here is a simple case illustrating the core of this construction. Suppose we want code of distance ( 1

2−ε)n.
Pick u, v ∈ {0, 1}n at random. By Chernoff,

Pr[∆(u, v) ≤ (
1

2
− ε)n] ≤ 2−ε

2n.

If there are 2
1
2 ε

2n−1 codewords, then the union bound shows that the probability that all pairs of codewords
have distance > ( 1

2 − ε) is nonzero. Therefore as the relative distance δ = d
n approaches 1

2 as 1
2 − ε, we can

achieve the rate Ω(ε2), although nonconstructively.

2.3 Partition proofs

Suppose C1, . . . , Cm are all linear codes with Ci ⊆ {0, 1}n.

Definition 2.4. We call C1, . . . , Cm a partition if Ci ∩ Cj = {~0},
⋃
Ci = {0, 1}n, and |Ci| = |Cj |.

Lemma 2.5. If C1, . . . , Cm forms a partition, then for some i, ∆(Ci) ≥ d if m > Vol(n, d− 1).

Exercise 2. Prove Lemma 2.5

Note that m(|Ci| − 1) = 2n − 1 for each i, so that if the above bound on m holds, we get something like
the Gilbert bound:

2n − 1

Vol(n, d− 1)
>

2n − 1

m
= 2k − 1.

3 Negative Results

We have a very simple bound using the pigeonhole principle.

Theorem 3.1 (Singleton Bound). For any code over any alphabet Σ, R ≤ 1− δ.

Proof. Let E : Σk → Σn be the encoding function, and π : Σn → Σk−1 be projection to the first k − 1
coordinates. By pigeonhole applied to π ◦ E : Σk → Σk−1, there are x, x′ ∈ Σk, distinct, s.t., π(E(x)) =
π(E(x′)). Thus ∆(C) ≤ ∆(E(x), E(x′)) ≤ n− k + 1, where C = imE is the set of codewords. Dividing by
n and taking n→∞ gives the desired bound.

Using the familiar packing arguments, we can also show the following.

Theorem 3.2 (Hamming (Packing) Bound). For any code in the binary alphabet, R ≤ 1−H(δ/2).

Proof. Each code of distance d corrects ≤ d−1
2 errors. By packing arguments, (over binary alphabet)

|C|Vol(n,
d− 1

2
) ≤ 2n

2k2H(δ/2)n−o(n) ≤ 2n

k ≤ n−H(δ/2)n+ o(n)

R ≤ 1−H(δ/2)
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Let’s now work with {−1, 1} ∼= {1, 0}. For x ∈ {1,−1}n,

〈x, x〉 = n

〈x, y〉 = n− 2∆(x, y)

Suppose C = (V1, . . . , VK) ⊆ {−1, 1}n and ∆(C) > 1
2 . Then 〈Vi, Vj〉 < 0 for i 6= j. We claim that the

number of such vectors can be at most n + 1. If instead of strict inequality, we have ∆(C) ≥ 1
2 , then we

claim that the number of such vectors can be at most 2n. If ∆(C) = 1
2 , then Vi have to be multiples of

coordinate vectors in Rn, so there are at most n of them.
Let’s prove one of these claims.

Lemma 3.3. If 〈Vi, Vj〉 < 0 for i 6= j, then K ≤ n+ 1.

Proof. Suppose K = n+ 2. Then there is a nontrivial linear dependence

n+1∑
i=1

λiVi = 0.

If λi ≥ 0 for all i, then

0 = 〈Vn+2,

n+1∑
i=1

λiVi〉

=

n+1∑
i=1

λi〈Vn+2, Vi〉

< 0,

a contradiction. We reach a similar contradiction if all λi ≤ 0.
Therefore, if I = {i : λi > 0} and J = {j : λj < 0}, then neither I nor J is empty. We can therefore

write ∑
i∈I

λiVi =
∑
j∈J
−λjVj .

But then
0 ≤ ‖

∑
i∈I

λiVi‖2 = 〈
∑
i∈I

λiVi,
∑
j∈J
−λjVj〉 < 0,

a contradiction again. Therefore K < n+ 2.

Exercise 3. Show that if 〈Vi, Vj〉 ≤ 0, then K ≤ 2n.

We have shown the following

Theorem 3.4 (Plotkin). Over a binary alphabet, if the relative distance of the code is > 1
2 , then the rate is

O(log n/n) which goes to 0 as n→∞.

Exercise 4. Show that if the distance of the code is 1
2 + ε, then the rate is ≤ 1

n log(1 + 1
2ε ).

Suppose we have a (n, k, d)q code. We can obtain a (n− 1, k, d− 1)q code by “puncturing the code”, i.e.
chopping off the last coordinate. We can also obtain a (n − 1, k − 1, d)q code by finding the most popular
letter in the first coordinate, taking the codewords that start with this letter, and removing this coordinate.
In the first case, we get slightly better rate at the cost of some relative distance; in the second case, we get
slightly better relative distance at the cost of some rate.

Exercise 5. Show R ≤ 1− 2δ given our observations above.
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