CS 229r Essential Coding Theory Feb 7, 2017

Lecture 5
Instructor: Madhu Sudan Scribes: Yueqi Sheng

In this lecture we will talk about the Elias-Bassalygo bound, which beats both the Hamming and Plotkin
bounds. Then we will discuss constructions of code in an attempt to meet those bounds.

1 Recap

In previous lectures, we talked about the rate vs relative distance trade off for binary code (¢ = 2).
e Hamming bound (packing bound): R <1— H(3)
e Plotkin bound: R <1— 24
e Gilbert-Varshamov bound: R > 1 — H(J)

where H(§) = Hz(6) = —(d1logd + (1 — 0) log(1 — §)).

Note that Hamming and plotkin give upper bounds: (R,d) combination is impossible to achieve above
the curve.

A summary plot is given below:

Figure 1: Rate vs Relative distance
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2 Elias-Bassalygo bound

In this section, we will prove the Elias-Bassalygo bound, which is the best known upper bound that could
be shown by elementary method.
Notation: For z,y € {0,1}",

e Hamming distance: A(x,y) = |{i: x; # y;}| to be the .
e Hamming ball: B(z,d) = {y € {0,1}" : A(z,y) < d}
e Volume of Hamming ball: |B(z,d)|
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Recall the hamming bound (or the packing bound) says that for code with relative distance &, one can
correct < % fraction of error uniquely. Geometrically, let C' be the set of codewords with min, ,ec A(x,y) > 4,

then for any x,y € C, B(z, %) N By, %) = (.

Figure 2: Hamming balls of radius gn are disjoint

The Elias-Bassalygo bound says given a code with relative distance ¢, one can correct 7 = %(1 —/1—-29)
fraction of error with L = poly(n) length list. Formally, we have the following lemma:

Lemma 1 (List decoding lemma). Given C as a code with relateive distance n, let 7 = (1 — /1 —25).
Then Yw € {0,1}™, there are at most L = poly(n) codewords vy,--- v € C s.t. w € B(v;,n).

Figure 3: = not in too many hamming balls of radius 7n

Theorem 2 (Elias-Bassalygo bound). If C is an infinite family of binary code with relative distance § and
rate R, then R <1— H(5(1— /1 - 25)).

To see lemma 1 implies the theorem: suppose for all w € {0,1}", € D(w) iff w € B(x,mn). Then each

w is in at most L such balls.
> Bz, )| < L2"
xeC
|C| = 2*. Recall that |B(x, mn)| ~ 27" Rerrange the above inequality gives
2k‘ S L2’n(17H(T))

Since L = poly(n), take the log of both side gives R = £ <1 — H(7) + o(n).
Exercise 3. Prove the list decoding lemma. (Lemma 1)

Sketch of Proof [of Lemma 1] Embed w € {0,1}" into {£1}™: Define ¢ : {0,1} — {£1} s.t. ¢(0) =1
and ¢(1) = 0. For all w € {0,1}", denote w' = [¢(w1), -, p(wny)].
It is easy to check:
<v£,v}> <n-—20n
(Wi, v)) = n, (w,w')=n

(v, w')y > (1—27)n

The goal now is to find a € [0, 1] s.t. Yo}, v/

i Yy

<v§—aw,v;—a> <0
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By a similar arguement as in that of the hamming bound, we get L < 2n. O

To see why 7 = %(1 — /1 —20), let’s go back to the {0,1}"™ world. WLOG, assume w = 0™. To obtain
A(w,v;) ~ mn, choose v; ~ Bin(n,T), i.e set each bit to be 1 w.p. 7 and 0 w.p. 1 — 7. Then

E[A(v;,v)] =27(1 —T)n

Solve for 7 gives T = £(1 — /1 — 26).

2.1 Compare Elias-Bassalygo with other bounds

Note that since < 7 < 6§ and H (0) is monotone increasing, Elias-Bassalygo bound stays between GV and

2
hamming bound. As § — %, 7 — % Thus Elias-Bassalygo is getting close to GV bound when § — %

27
However, in the case when § is small, Elias-Bassalygo is not too much better than Hamming bound. Indeed

as § — 0, V1 —20 ~ 1 — 4. A simply calculation shows 1 — H(r) ~ 1 — H(3).

What about the growth rate when § — 3?7 say § = 2 — ¢, the GV bound gives 1 — H(8) = Q(e?) while
Elias-Bassalygo only gives 1 — H(7) = Q(e).
The Linear Programming bound says GV is the closer to reality. It claims as § — 3, R < O(€?log(1)).

3 Reed-Solomon codes

In the previous section we discussed some asymptotic bounds of [n, k,d], codes for the rate and relative
distance of the code. In this section, we will talk about a explicit construction of linear code in an attempt
to meet the bounds from the previous section.

Definition 4 (Reed-Solomon Code). Given some field F = %, assume |F| > n. Let aq,- -+, «, be the set of
distinct elements in F.
Define E : ©F — ™ as follows: for any m € ¥, define the degree k — 1 polynomial given by m be

k—1
M(z) = Z mzt ™!

Then E(m) = [M(ay), -+, M(ay,)] (That is, we treat m as the coefficient of M(x) and evaluate M at
Qq, - ;an-)

Claim 5. The parameter for Reed-Solomon code is [n,k,n — k + 1],.

Proof of [: claim 5] Given n, k, let E be the encoding function of Reed-Solomon code. Observe that for any
m,m’ € 2F (M —M")(z) = M(x)— M(z'). Thus if M(a;) = M’ (), (M —M")(;) = M(c;) — M'(a;) = 0.

A(E(M), E(M")) = A(E(M — M"), E0)) = n — [{i : (M — M")(c;) = 0}
Since (M —M')(z) is a degree k—1 polynomial, there are at most k—1 roots. |{i: (M —M")(a;) =0} < k—1.

Thus we have
AEM),E(M") >n—(k+1)

Remark this says Reed-Solomon code matches the singleton bound.
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4 Reduce the field size

Note that for Reed-solomon code with parameter [n, k,n — k + 1],, the field size is at least n. It is natural
to ask whether one can achieve singleton bound with a smaller field size, in particular, on Fs.
We start from a simple fact about finite field

Fact 6. I, is a field iff q is a prime power.
Exercise 7. Prove fact 6.

Definition 8. For t > log(|Fy|), let ¢ : Fy — {0,1}" be an 1-1, onto map. For x € F}', denote ¢(z) =

Here we take n = g = 2.

Claim 9. If C is a Reed-Solomon code with parameter [n,k,n —k + 1|4, then ¢(C) is a [tn,tk,n — k + 1],
code, where

¢(C) = {¢(z) : x € C}

Proof of [ Claim 9] By construction, for m > 1 and x € F}*, ¢(x) € ({0,1}")™. Thus the block length
and message length for ¢(C) tn,tk.

To lower bound A(¢(C))le: For all x,y € Fy and i € {1,---,n}. If 2(i) # y(i), then since ¢ is 1-1,
A(¢(x(i)), ¢(y(i))) = 1. This gives

Ag(z), o(y)) = ZA(qﬁ(fE(i)), ¢(y(i)) = D(x,y) 2 n—k+1

where the last inequality follows from the definition of Reed-Solomon code. Thus A(¢(C)) > n —k+ 1.
Thus the parameter for ¢(C) is [tn,tk,n — k + 1]s. O

Let N = nlogn, as n — 00, n =~ logLN' Let R = % be the rate, the above parameters becomes
[N, RN, (1 = R) 51z

If we change d: say d = 15, we get n—k = 14 from Reed-Solomon code. Then the rate becomes R = 1— %
and we get a code with parameter [N, N — 141log N — o(log N), 15]. Here we no longer meet the singleton
bound.

One could argue that we only get one bit distance from every block of ¢ bits, indeed we can look for
better map ¢.

4.1 Code concatenation

By taking ¢ in the previous section to be some encoding function, we can obtained better parameters. This
is the Concatenated code.

Definition 10 (concatenation code). Let ¥ = F, be a field. Eouter : 3% — X", Eipner © % — {0,1}* with
t = O(logn). Let 6o = A(Einner), i-e. Ya,b € X, A(Einner(a), Einner(b)) > do. Then the concatenated code
Eguter © Binner : 3% — ({0,1})™ is defined as

Eouter o Einner (m) = [Einner (l’]), e 7Einner(ajn)]
where Eoyter(m) = (21, , Ty].

What are the parameters of the concatenation code? Suppose the parameter of Eoyiser 18 [n1, k1, d1]q,
and the parameter of Ejpper i [n2, k2, da]g,-

e Observe that by construction, ny = log,, (q1)
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e The parameter of Epyier © Einner is [n1ne, k1ka, d1da]y, -

Sketch of Proof The proof of block length and message length follows directly from that of Claim
9. To get the relative distance: If z; # y;, then A(Eipner (i), Einner(y:)) > dane. If 2,y are encoding
given by Foyter, there are at least dyny such i. Therefore A(Eoyuter © Einner) = dini(dang). Thus the

. ) . dini(d
relative distance is % =dyds.

e The rate R = £152 — R R,. The relative distance is § = d10s. O

ninz

If we let Eoytter be Reed-Solomon code, Ry & 1—4;. Suppose Ry = 1—H (d3), then the for A(Eyyter© Einner),
RiRy ~ (1 —61)(1 — H(d2)). This is a bit weaker than GV since given the distance d1d2, we could have
achieve the rate 1 — H(4102).

Exercise 11. Assume Einpner is the linear binary code with parameter [Ralogn,logn,d], show that there

exists such Eipper with Re > 1— H(J) and there exists an algorithm that find the E;pper in O(poly(n)) time.
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