In this lecture we will talk about the Elias-Bassalygo bound, which beats both the Hamming and Plotkin bounds. Then we will discuss constructions of code in an attempt to meet those bounds.

1 Recap

In previous lectures, we talked about the rate vs relative distance trade off for binary code $(q=2)$.

- Hamming bound (packing bound): $R \leq 1-H\left(\frac{\delta}{2}\right)$
- Plotkin bound: $R \leq 1-2 \delta$
- Gilbert-Varshamov bound: $R \geq 1-H(\delta)$
where $H(\delta)=H_{2}(\delta)=-(\delta \log \delta+(1-\delta) \log (1-\delta))$.
Note that Hamming and plotkin give upper bounds: (R, δ) combination is impossible to achieve above the curve.

A summary plot is given below:

Figure 1: Rate vs Relative distance

2 Elias-Bassalygo bound

In this section, we will prove the Elias-Bassalygo bound, which is the best known upper bound that could be shown by elementary method.

Notation: For $x, y \in\{0,1\}^{n}$,

- Hamming distance: $\Delta(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$ to be the .
- Hamming ball: $B(x, d)=\left\{y \in\{0,1\}^{n}: \Delta(x, y) \leq d\right\}$
- Volume of Hamming ball: $|B(x, d)|$

Recall the hamming bound (or the packing bound) says that for code with relative distance δ, one can correct $\leq \frac{\delta}{2}$ fraction of error uniquely. Geometrically, let C be the set of codewords with $\min _{x, y \in C} \Delta(x, y) \geq \delta$, then for any $x, y \in C, B\left(x, \frac{\delta}{2}\right) \cap B\left(y, \frac{\delta}{2}\right)=\emptyset$.

Figure 2: Hamming balls of radius $\frac{\delta}{2} n$ are disjoint

The Elias-Bassalygo bound says given a code with relative distance δ, one can correct $\tau=\frac{1}{2}(1-\sqrt{1-2 \delta})$ fraction of error with $L=\operatorname{poly}(n)$ length list. Formally, we have the following lemma:

Lemma 1 (List decoding lemma). Given C as a code with relateive distance δn, let $\tau=\frac{1}{2}(1-\sqrt{1-2 \delta})$. Then $\forall w \in\{0,1\}^{n}$, there are at most $L=$ poly (n) codewords $v_{1}, \cdots, v_{L} \in C$ s.t. $w \in B\left(v_{i}, \tau n\right)$.

Figure 3: x not in too many hamming balls of radius τn

Theorem 2 (Elias-Bassalygo bound). If \mathcal{C} is an infinite family of binary code with relative distance δ and rate R, then $R \leq 1-H\left(\frac{1}{2}(1-\sqrt{1-2 \delta})\right)$.

To see lemma 1 implies the theorem: suppose for all $w \in\{0,1\}^{n}, x \in D(w)$ iff $w \in B(x, \tau n)$. Then each w is in at most L such balls.

$$
\sum_{x \in C}|B(x, \tau n)| \leq L 2^{n}
$$

$|C|=2^{k}$. Recall that $|B(x, \tau n)| \sim 2^{H(\tau) n}$. Rerrange the above inequality gives

$$
2^{k} \leq L 2^{n(1-H(\tau))}
$$

Since $L=\operatorname{poly}(n)$, take the \log of both side gives $R=\frac{k}{n} \leq 1-H(\tau)+o(n)$.
Exercise 3. Prove the list decoding lemma. (Lemma 1)
Sketch of Proof [of Lemma 1] Embed $w \in\{0,1\}^{n}$ into $\{ \pm 1\}^{n}$: Define $\phi:\{0,1\} \rightarrow\{ \pm 1\}$ s.t. $\phi(0)=1$ and $\phi(1)=0$. For all $w \in\{0,1\}^{n}$, denote $w^{\prime}=\left[\phi\left(w_{1}\right), \cdots, \phi\left(w_{n}\right)\right]$.

It is easy to check:

$$
\begin{gathered}
\left\langle v_{i}^{\prime}, v_{j}^{\prime}\right\rangle \leq n-2 \delta n \\
\left\langle v_{i}^{\prime}, v_{i}^{\prime}\right\rangle=n,\left\langle w^{\prime}, w^{\prime}\right\rangle=n \\
\left\langle v_{i}^{\prime}, w^{\prime}\right\rangle \geq(1-2 \tau) n
\end{gathered}
$$

The goal now is to find $\alpha \in[0,1]$ s.t. $\forall v_{i}^{\prime}, v_{j}^{\prime}$,

$$
\left\langle v_{i}^{\prime}-\alpha w, v_{j}^{\prime}-\alpha\right\rangle \leq 0
$$

CS 229r Essential Coding Theory-2

By a similar arguement as in that of the hamming bound, we get $L \leq 2 n$.
To see why $\tau=\frac{1}{2}(1-\sqrt{1-2 \delta})$, let's go back to the $\{0,1\}^{n}$ world. WLOG, assume $w=0^{n}$. To obtain $\Delta\left(w, v_{i}\right) \sim \tau n$, choose $v_{i} \sim \operatorname{Bin}(n, \tau)$, i.e set each bit to be 1 w.p. τ and 0 w.p. $1-\tau$. Then

$$
\mathbb{E}\left[\Delta\left(v_{i}, v_{j}\right)\right]=2 \tau(1-\tau) n
$$

Solve for τ gives $\tau=\frac{1}{2}(1-\sqrt{1-2 \delta})$.

2.1 Compare Elias-Bassalygo with other bounds

Note that since $\frac{\delta}{2} \leq \tau \leq \delta$ and $H(\delta)$ is monotone increasing, Elias-Bassalygo bound stays between GV and hamming bound. As $\delta \rightarrow \frac{1}{2}, \tau \rightarrow \frac{1}{2}$. Thus Elias-Bassalygo is getting close to GV bound when $\delta \rightarrow \frac{1}{2}$. However, in the case when δ is small, Elias-Bassalygo is not too much better than Hamming bound. Indeed as $\delta \rightarrow 0, \sqrt{1-2 \delta} \approx 1-\delta$. A simply calculation shows $1-H(\tau) \approx 1-H\left(\frac{\delta}{2}\right)$.

What about the growth rate when $\delta \rightarrow \frac{1}{2}$? say $\delta=\frac{1}{2}-\epsilon$, the GV bound gives $1-H(\delta)=\Omega\left(\epsilon^{2}\right)$ while Elias-Bassalygo only gives $1-H(\tau)=\Omega(\epsilon)$.

The Linear Programming bound says GV is the closer to reality. It claims as $\delta \rightarrow \frac{1}{2}, R \leq O\left(\epsilon^{2} \log \left(\frac{1}{\epsilon}\right)\right)$.

3 Reed-Solomon codes

In the previous section we discussed some asymptotic bounds of $[n, k, d]_{q}$ codes for the rate and relative distance of the code. In this section, we will talk about a explicit construction of linear code in an attempt to meet the bounds from the previous section.

Definition 4 (Reed-Solomon Code). Given some field $\mathbb{F}=\Sigma$, assume $|\mathbb{F}| \geq n$. Let $\alpha_{1}, \cdots, \alpha_{n}$ be the set of distinct elements in \mathbb{F}.
Define $E: \Sigma^{k} \rightarrow \Sigma^{n}$ as follows: for any $m \in \Sigma^{k}$, define the degree $k-1$ polynomial given by m be

$$
M(x)=\sum_{i}^{k-1} m_{i} x^{i-1}
$$

Then $E(m)=\left[M\left(\alpha_{1}\right), \cdots, M\left(\alpha_{n}\right)\right]$ (That is, we treat m as the coefficient of $M(x)$ and evaluate M at $\left.\alpha_{1}, \cdots, \alpha_{n}.\right)$

Claim 5. The parameter for Reed-Solomon code is $[n, k, n-k+1]_{q}$.
Proof of [: claim 5] Given n, k, let E be the encoding function of Reed-Solomon code. Observe that for any $m, m^{\prime} \in \Sigma^{k},\left(M-M^{\prime}\right)(x)=M(x)-M\left(x^{\prime}\right)$. Thus if $M\left(\alpha_{i}\right)=M^{\prime}\left(\alpha_{i}\right),\left(M-M^{\prime}\right)\left(\alpha_{i}\right)=M\left(\alpha_{i}\right)-M^{\prime}\left(\alpha_{i}\right)=0$.

$$
\Delta\left(E(M), E\left(M^{\prime}\right)\right)=\Delta\left(E\left(M-M^{\prime}\right), E(0)\right)=n-\left|\left\{i:\left(M-M^{\prime}\right)\left(\alpha_{i}\right)=0\right\}\right|
$$

Since $\left(M-M^{\prime}\right)(x)$ is a degree $k-1$ polynomial, there are at most $k-1$ roots. $\left|\left\{i:\left(M-M^{\prime}\right)\left(\alpha_{i}\right)=0\right\}\right| \leq k-1$. Thus we have

$$
\Delta\left(E(M), E\left(M^{\prime}\right)\right) \geq n-(k+1)
$$

Remark this says Reed-Solomon code matches the singleton bound.

4 Reduce the field size

Note that for Reed-solomon code with parameter $[n, k, n-k+1]_{q}$, the field size is at least n. It is natural to ask whether one can achieve singleton bound with a smaller field size, in particular, on \mathbb{F}_{2}.

We start from a simple fact about finite field
Fact 6. \mathbb{F}_{q} is a field iff q is a prime power.
Exercise 7. Prove fact 6 .
Definition 8. For $t \geq \log \left(\left|\mathbb{F}_{q}\right|\right)$, let $\phi: \mathbb{F}_{q} \rightarrow\{0,1\}^{t}$ be an 1-1, onto map. For $x \in \mathbb{F}_{q}^{m}$, denote $\phi(x)=$ $\left[\phi\left(x_{1}\right), \cdots, \phi\left(x_{m}\right)\right]$.

Here we take $n=q=2^{t}$.
Claim 9. If C is a Reed-Solomon code with parameter $[n, k, n-k+1]_{q}$, then $\phi(C)$ is a $[t n, t k, n-k+1]_{2}$ code, where

$$
\phi(C)=\{\phi(x): x \in C\}
$$

Proof of [: Claim 9] By construction, for $m \geq 1$ and $x \in \mathbb{F}_{q}^{m}, \phi(x) \in\left(\{0,1\}^{t}\right)^{m}$. Thus the block length and message length for $\phi(C) t n, t k$.

To lower bound $\Delta(\phi(C))]_{2}$: For all $x, y \in \mathbb{F}_{q}^{n}$ and $i \in\{1, \cdots, n\}$. If $x(i) \neq y(i)$, then since ϕ is 1-1, $\Delta(\phi(x(i)), \phi(y(i))) \geq 1$. This gives

$$
\Delta(\phi(x), \phi(y))=\sum_{i} \Delta(\phi(x(i)), \phi(y(i))) \geq D(x, y) \geq n-k+1
$$

where the last inequality follows from the definition of Reed-Solomon code. Thus $\Delta(\phi(C)) \geq n-k+1$. Thus the parameter for $\phi(C)$ is $[t n, t k, n-k+1]_{2}$.

Let $N=n \log n$, as $n \rightarrow \infty, n \approx \frac{N}{\log N}$. Let $R=\frac{k}{n}$ be the rate, the above parameters becomes $\left[N, R N,(1-R) \frac{N}{\log N}\right]_{2}$.

If we change d : say $d=15$, we get $n-k=14$ from Reed-Solomon code. Then the rate becomes $R=1-\frac{14}{n}$ and we get a code with parameter $[N, N-14 \log N-o(\log N), 15]$. Here we no longer meet the singleton bound.

One could argue that we only get one bit distance from every block of t bits, indeed we can look for better map ϕ.

4.1 Code concatenation

By taking ϕ in the previous section to be some encoding function, we can obtained better parameters. This is the Concatenated code.

Definition 10 (concatenation code). Let $\Sigma=\mathbb{F}_{q}$ be a field. $E_{\text {outer }}: \Sigma^{k} \rightarrow \Sigma^{n}$, $E_{\text {inner }}: \Sigma \rightarrow\{0,1\}^{t}$ with $t=O(\log n)$. Let $\delta_{0}=\Delta\left(E_{\text {inner }}\right)$, i.e. $\forall a, b \in \Sigma, \Delta\left(E_{\text {inner }}(a), E_{\text {inner }}(b)\right) \geq \delta_{0}$. Then the concatenated code $E_{\text {outer }} \circ E_{\text {inner }}: \Sigma^{k} \rightarrow\left(\{0,1\}^{t}\right)^{n}$ is defined as

$$
E_{\text {outer }} \circ E_{\text {inner }}(m)=\left[E_{\text {inner }}\left(x_{1}\right), \cdots, E_{\text {inner }}\left(x_{n}\right)\right]
$$

where $E_{\text {outer }}(m)=\left[x_{1}, \cdots, x_{n}\right]$.
What are the parameters of the concatenation code? Suppose the parameter of $E_{\text {outter }}$ is $\left[n_{1}, k_{1}, d_{1}\right]_{q_{1}}$ and the parameter of $E_{\text {inner }}$ is $\left[n_{2}, k_{2}, d_{2}\right]_{q_{2}}$.

- Observe that by construction, $n_{2}=\log _{q_{2}}\left(q_{1}\right)$
- The parameter of $E_{\text {outer }} \circ E_{\text {inner }}$ is $\left[n_{1} n_{2}, k_{1} k_{2}, d_{1} d_{2}\right]_{q_{2}}$.

Sketch of Proof The proof of block length and message length follows directly from that of Claim 9. To get the relative distance: If $x_{i} \neq y_{i}$, then $\Delta\left(E_{\text {inner }}\left(x_{i}\right), E_{\text {inner }}\left(y_{i}\right)\right) \geq d_{2} n_{2}$. If x, y are encoding given by $E_{\text {outter }}$, there are at least $d_{1} n_{1}$ such i. Therefore $\Delta\left(E_{\text {outer }} \circ E_{\text {inner }}\right) \geq d_{1} n_{1}\left(d_{2} n_{2}\right)$. Thus the relative distance is $\frac{d_{1} n_{1}\left(d_{2} n_{2}\right)}{n_{1} n_{2}}=d_{1} d_{2}$.

- The rate $R=\frac{k_{1} k_{2}}{n_{1} n_{2}}=R_{1} R_{2}$. The relative distance is $\delta=\delta_{1} \delta_{2}$.

If we let $E_{\text {outter }}$ be Reed-Solomon code, $R_{1} \approx 1-\delta_{1}$. Suppose $R_{2}=1-H\left(\delta_{2}\right)$, then the for $\Delta\left(E_{\text {outer }} \circ E_{\text {inner }}\right)$, $R_{1} R_{2} \approx\left(1-\delta_{1}\right)\left(1-H\left(\delta_{2}\right)\right)$. This is a bit weaker than GV since given the distance $\delta_{1} \delta_{2}$, we could have achieve the rate $1-H\left(\delta_{1} \delta_{2}\right)$.

Exercise 11. Assume $E_{\text {inner }}$ is the linear binary code with parameter $\left[R_{2} \log n, \log n, \delta\right]$, show that there exists such $E_{\text {inner }}$ with $R_{2} \geq 1-H(\delta)$ and there exists an algorithm that find the $E_{\text {inner }}$ in $O(p o l y(n))$ time.

References

