
CS 229r Essential Coding Theory Feb 7, 2017

Lecture 5
Instructor: Madhu Sudan Scribes: Yueqi Sheng

In this lecture we will talk about the Elias-Bassalygo bound, which beats both the Hamming and Plotkin
bounds. Then we will discuss constructions of code in an attempt to meet those bounds.

1 Recap

In previous lectures, we talked about the rate vs relative distance trade off for binary code (q = 2).

• Hamming bound (packing bound): R ≤ 1−H(δ2)

• Plotkin bound: R ≤ 1− 2δ

• Gilbert-Varshamov bound: R ≥ 1−H(δ)

where H(δ) = H2(δ) = −(δ log δ + (1− δ) log(1− δ)).
Note that Hamming and plotkin give upper bounds: (R, δ) combination is impossible to achieve above

the curve.
A summary plot is given below:

Figure 1: Rate vs Relative distance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

Hamming bound
GV bound

Singleton bound
Plotkin bound

Figure 4.5: The current bounds on the rate R vs. relative distance δ for binary codes. The GV
bound is a lower bound on rate while the other three bounds are upper bounds on R.

Note that Corollary 4.4.2 implies that for any q-ary code of rate R and relative distance δ

(where q is a constant independent of the block length of the code), R < 1−δ. In other words,
this answers Question 4.3.1 in the negative.

Let us pause for a bit at this point and recollect the bounds on R versusδ that we have proved
till now. Figure 4.5 depicts all the bounds we have seen till now (for q = 2). The GV bound is
the best known lower bound at the time of writing of this book. Better upper bounds are known
and we will see one such trade-off (called the Elias-Bassalygo bound) in Section 8.1.

Now, we turn to the proof of Theorem 4.4.1, for which we will need two more lemmas.
The first lemma deals with vectors over real spaces. We quickly recap the necessary defini-

tions. Consider a vector v in Rn , that is, a tuple of n real numbers. This vector has (Euclidean)

norm ∥v∥ =
√

v2
1 + v2

2 + . . .+ v2
n , and is a unit vector if and only if its norm is 1. The inner product

of two vectors, u and v, is 〈u,v〉 =∑
i ui · vi . The following lemma gives a bound on the number

of vectors that can exist such that every pair is at an obtuse angle with each other.

Lemma 4.4.3 (Geometric Lemma). Let v1,v2, . . . ,vm ∈RN be non-zero vectors.

1. If 〈vi ,v j 〉 ≤ 0 for all i ̸= j , then m ≤ 2N .

2. Let vi be unit vectors for 1 ≤ i ≤ m. Further, if 〈vi ,v j 〉 ≤−ε< 0 for all i ̸= j , then m ≤ 1+ 1
ε .2

(Item 1 is tight: see Exercise 4.14.) The proof of the Plotkin bound will need the existence of a
map from codewords to real vectors with certain properties, which the next lemma guarantees.

2Note that since vi and v j are both unit vectors, 〈vi ,v j 〉 is the cosine of the angle between them.

87

2 Elias-Bassalygo bound

In this section, we will prove the Elias-Bassalygo bound, which is the best known upper bound that could
be shown by elementary method.

Notation: For x, y ∈ {0, 1}n,

• Hamming distance: ∆(x, y) = |{i : xi 6= yi}| to be the .

• Hamming ball: B(x, d) = {y ∈ {0, 1}n : ∆(x, y) ≤ d}

• Volume of Hamming ball: |B(x, d)|

CS 229r Essential Coding Theory-1

Recall the hamming bound (or the packing bound) says that for code with relative distance δ, one can
correct≤ δ

2 fraction of error uniquely. Geometrically, let C be the set of codewords with minx,y∈C ∆(x, y) ≥ δ,
then for any x, y ∈ C, B(x, δ2) ∩B(y, δ2) = ∅.

Figure 2: Hamming balls of radius δ
2n are disjoint

δ
2n

The Elias-Bassalygo bound says given a code with relative distance δ, one can correct τ = 1
2 (1−

√
1− 2δ)

fraction of error with L = poly(n) length list. Formally, we have the following lemma:

Lemma 1 (List decoding lemma). Given C as a code with relateive distance δn, let τ = 1
2 (1 −

√
1− 2δ).

Then ∀w ∈ {0, 1}n, there are at most L = poly(n) codewords v1, · · · , vL ∈ C s.t. w ∈ B(vi, τn).

Figure 3: x not in too many hamming balls of radius τn

w
v1 v2

v3 τn

Theorem 2 (Elias-Bassalygo bound). If C is an infinite family of binary code with relative distance δ and
rate R, then R ≤ 1−H(1

2 (1−
√

1− 2δ)).

To see lemma 1 implies the theorem: suppose for all w ∈ {0, 1}n, x ∈ D(w) iff w ∈ B(x, τn). Then each
w is in at most L such balls. ∑

x∈C
|B(x, τn)| ≤ L2n

|C| = 2k. Recall that |B(x, τn)| ∼ 2H(τ)n. Rerrange the above inequality gives

2k ≤ L2n(1−H(τ))

Since L = poly(n), take the log of both side gives R = k
n ≤ 1−H(τ) + o(n).

Exercise 3. Prove the list decoding lemma. (Lemma 1)

Sketch of Proof [of Lemma 1] Embed w ∈ {0, 1}n into {±1}n: Define φ : {0, 1} → {±1} s.t. φ(0) = 1
and φ(1) = 0. For all w ∈ {0, 1}n, denote w′ = [φ(w1), · · · , φ(wn)].

It is easy to check: 〈
v′i, v

′
j

〉
≤ n− 2δn

〈v′i, v′i〉 = n, 〈w′, w′〉 = n

〈v′i, w′〉 ≥ (1− 2τ)n

The goal now is to find α ∈ [0, 1] s.t. ∀v′i, v′j ,〈
v′i − αw, v′j − α

〉
≤ 0

CS 229r Essential Coding Theory-2

By a similar arguement as in that of the hamming bound, we get L ≤ 2n.

To see why τ = 1
2 (1 −

√
1− 2δ), let’s go back to the {0, 1}n world. WLOG, assume w = 0n. To obtain

∆(w, vi) ∼ τn, choose vi ∼ Bin(n, τ), i.e set each bit to be 1 w.p. τ and 0 w.p. 1− τ . Then

E[∆(vi, vj)] = 2τ(1− τ)n

Solve for τ gives τ = 1
2 (1−

√
1− 2δ).

2.1 Compare Elias-Bassalygo with other bounds

Note that since δ
2 ≤ τ ≤ δ and H(δ) is monotone increasing, Elias-Bassalygo bound stays between GV and

hamming bound. As δ → 1
2 , τ → 1

2 . Thus Elias-Bassalygo is getting close to GV bound when δ → 1
2 .

However, in the case when δ is small, Elias-Bassalygo is not too much better than Hamming bound. Indeed
as δ → 0,

√
1− 2δ ≈ 1− δ. A simply calculation shows 1−H(τ) ≈ 1−H(δ2).

What about the growth rate when δ → 1
2? say δ = 1

2 − ε, the GV bound gives 1 −H(δ) = Ω(ε2) while
Elias-Bassalygo only gives 1−H(τ) = Ω(ε).

The Linear Programming bound says GV is the closer to reality. It claims as δ → 1
2 , R ≤ O(ε2 log(1

ε)).

3 Reed-Solomon codes

In the previous section we discussed some asymptotic bounds of [n, k, d]q codes for the rate and relative
distance of the code. In this section, we will talk about a explicit construction of linear code in an attempt
to meet the bounds from the previous section.

Definition 4 (Reed-Solomon Code). Given some field F = Σ, assume |F| ≥ n. Let α1, · · · , αn be the set of
distinct elements in F.
Define E : Σk → Σn as follows: for any m ∈ Σk, define the degree k − 1 polynomial given by m be

M(x) =

k−1∑
i

mix
i−1

Then E(m) = [M(α1), · · · ,M(αn)] (That is, we treat m as the coefficient of M(x) and evaluate M at
α1, · · · , αn.)

Claim 5. The parameter for Reed-Solomon code is [n, k, n− k + 1]q.

Proof of [: claim 5] Given n, k, let E be the encoding function of Reed-Solomon code. Observe that for any
m,m′ ∈ Σk, (M −M ′)(x) = M(x)−M(x′). Thus if M(αi) = M ′(αi), (M −M ′)(αi) = M(αi)−M ′(αi) = 0.

∆(E(M), E(M ′)) = ∆(E(M −M ′), E(0)) = n− |{i : (M −M ′)(αi) = 0}|

Since (M−M ′)(x) is a degree k−1 polynomial, there are at most k−1 roots. |{i : (M−M ′)(αi) = 0}| ≤ k−1.
Thus we have

∆(E(M), E(M ′)) ≥ n− (k + 1)

Remark this says Reed-Solomon code matches the singleton bound.

CS 229r Essential Coding Theory-3

4 Reduce the field size

Note that for Reed-solomon code with parameter [n, k, n − k + 1]q, the field size is at least n. It is natural
to ask whether one can achieve singleton bound with a smaller field size, in particular, on F2.

We start from a simple fact about finite field

Fact 6. Fq is a field iff q is a prime power.

Exercise 7. Prove fact 6.

Definition 8. For t ≥ log(|Fq|), let φ : Fq → {0, 1}t be an 1-1, onto map. For x ∈ Fmq , denote φ(x) =
[φ(x1), · · · , φ(xm)].

Here we take n = q = 2t.

Claim 9. If C is a Reed-Solomon code with parameter [n, k, n− k + 1]q, then φ(C) is a [tn, tk, n− k + 1]2
code, where

φ(C) = {φ(x) : x ∈ C}

Proof of [: Claim 9] By construction, for m ≥ 1 and x ∈ Fmq , φ(x) ∈ ({0, 1}t)m. Thus the block length
and message length for φ(C) tn, tk.

To lower bound ∆(φ(C))]2: For all x, y ∈ Fnq and i ∈ {1, · · · , n}. If x(i) 6= y(i), then since φ is 1-1,
∆(φ(x(i)), φ(y(i))) ≥ 1. This gives

∆(φ(x), φ(y)) =
∑
i

∆(φ(x(i)), φ(y(i))) ≥ D(x, y) ≥ n− k + 1

where the last inequality follows from the definition of Reed-Solomon code. Thus ∆(φ(C)) ≥ n− k + 1.
Thus the parameter for φ(C) is [tn, tk, n− k + 1]2.

Let N = n log n, as n → ∞, n ≈ N
logN . Let R = k

n be the rate, the above parameters becomes

[N,RN, (1−R) N
logN]2.

If we change d: say d = 15, we get n−k = 14 from Reed-Solomon code. Then the rate becomes R = 1− 14
n

and we get a code with parameter [N,N − 14 logN − o(logN), 15]. Here we no longer meet the singleton
bound.

One could argue that we only get one bit distance from every block of t bits, indeed we can look for
better map φ.

4.1 Code concatenation

By taking φ in the previous section to be some encoding function, we can obtained better parameters. This
is the Concatenated code.

Definition 10 (concatenation code). Let Σ = Fq be a field. Eouter : Σk → Σn, Einner : Σ → {0, 1}t with
t = O(log n). Let δ0 = ∆(Einner), i.e. ∀a, b ∈ Σ, ∆(Einner(a), Einner(b)) ≥ δ0. Then the concatenated code
Eouter ◦ Einner : Σk → ({0, 1}t)n is defined as

Eouter ◦ Einner(m) = [Einner(x1), · · · , Einner(xn)]

where Eouter(m) = [x1, · · · , xn].

What are the parameters of the concatenation code? Suppose the parameter of Eoutter is [n1, k1, d1]q1
and the parameter of Einner is [n2, k2, d2]q2 .

• Observe that by construction, n2 = logq2(q1)

CS 229r Essential Coding Theory-4

• The parameter of Eouter ◦ Einner is [n1n2, k1k2, d1d2]q2 .

Sketch of Proof The proof of block length and message length follows directly from that of Claim
9. To get the relative distance: If xi 6= yi, then ∆(Einner(xi), Einner(yi)) ≥ d2n2. If x, y are encoding
given by Eoutter, there are at least d1n1 such i. Therefore ∆(Eouter ◦Einner) ≥ d1n1(d2n2). Thus the

relative distance is d1n1(d2n2)
n1n2

= d1d2.

• The rate R = k1k2
n1n2

= R1R2. The relative distance is δ = δ1δ2.

If we let Eoutter be Reed-Solomon code, R1 ≈ 1−δ1. Suppose R2 = 1−H(δ2), then the for ∆(Eouter◦Einner),
R1R2 ≈ (1 − δ1)(1 − H(δ2)). This is a bit weaker than GV since given the distance δ1δ2, we could have
achieve the rate 1−H(δ1δ2).

Exercise 11. Assume Einner is the linear binary code with parameter [R2 log n, log n, δ], show that there
exists such Einner with R2 ≥ 1−H(δ) and there exists an algorithm that find the Einner in O(poly(n)) time.

References

CS 229r Essential Coding Theory-5

