
CS 229r Essential Coding Theory, Lecture 7 Feb 14, 2017

Lecture 7
Instructor: Madhu Sudan Scribes: Vasileios Nakos

1 Last Lecture

Last week we talked about Reed-Solomon codes [RS60]. The Reed-Solomon codes are [n, k, n−k+ 1]n codes
that are optimal, in the sense that they match the pigeonhole principle.

On weakness of Reed-Solomon codes is their alphabet size, which has to be at least n. A fair amount of
work in Coding Theory tries to understand how to fix it this disadvantage. We do not expect to achieve the
same rate with smaller alphabet, because of the q-ary Plotkin bound which states that R ≤ 1− q

q−1δ. Best

known codes achieve R ≥ 1− δ − 1√
q .

2 Today

In today’s lecture, we will see concatenated codes, Reed-Muller codes and BCH codes. All these cods try to
reduce the alphabet size while still achieving good rate and small relative distance.

3 Concatenated Codes

Today we will talk about concatenated codes [FF66]. Take a (N,K,D)Q code, which we will call Outer code
(Cout) and a (n, k, d)2 code which we will call inner code (Cin). We enforce that Q = 2k. Now this means
that Cout takes messages of length K in an alphabet of size 2k and encodes them to messages of length N ,
while Cin takes messages of length k and encodes them to messages of length n in an alphabet of size 2.
The concatenated code then maps each message (m1, . . . ,mK) to (Cin(m′1), Cin(m′2), . . . , Cin(m′K), where
(m′1,m

′
2, . . . ,m

′
N) = Cout(m1, . . . ,mk). This means that one can use as an outer code a Reed-Solomon code

(which inevitably has a large alphabet) and as an inner code a Hadamard code, which as we will see later
has alphabet size 2, and reduce the alphabet size down to 2. Such a code is called Justesen code.

It can be proved that the concatenated code is (N · n,K · k,D · d)2. To understand the limits of the
technique of code concatenation, a result that is useful is the Zyablov bound, which is a lower bound on
the rate R and relative distance of concatenated codes. This bound is the best known bound for the binary
code.

There is a very simple construction that matches the Zyablov bound in poly(n) time, although we will
not prove it. We employ the following construction: Let m0, . . . ,mK−1 ∈ Fk where FK = {a1, . . . , aK} with
K = 2k. Then the message is the polynomial M(x) =

∑
imix

i and the encoding of the message equals
< M(a1), a1,M(a2), a2, . . . ,M(aK), aK > when we view each one of these symbols as a k bit sequence. This
achieves the Zyablov bound (exercise).

4 Reed-Muller codes

In this section we will discuss Reed-Muller codes [Mul54]. These codes were discovered by Muller and
provided a decoding algorithm by Reed. As we mentioned in the previous section, our goal is to reduce the
alphabet size. For univariate codes we need n ≤ q. For bivariate polynomials we need n ≤ q2 and we expect
that for multivariate polynomials we need n ≤ qm, where m is the degree of the polynomial. So we can start
building larger codes with m→∞, but what is the price we need to pay ?

CS 229r Essential Coding Theory, Lecture 7-1

The construction of the generalised Reed-Muller codes (q > 2) is the following:View messages as m-
variate polynomials of degree at most r over Fq. The encoding is the evaluations over the whole space, that
is qm points.

Let now N(m, q, r) = |{(r1, . . . , rm) : |0 ≤ rq ≤ q − 1,
∑m

i=1 ri}|, which is the set of all monomials that
can appear in a Reed-Muller code and is a basis of the vector space of all codewords. To understand how
N(m, q, r) grows we look at some special cases.

• A simple case is hen r < q we have that N(m, q, r) =
(
r+m
m

)
. In particular for m = O(1), and r, q → +∞

we have that
(
r+m
m

)
∼ rm

m! .

• A popular choice in CS theory is the following settinf of parameters. Pick δ = 1
2 , m = log k

log log k , q =

log2 k, r = q
2 . The length of the code is n = qm = k2, which is still polynomial in k. This is interesting

because alphabet is poly(log n).

• Another interesting special case is the Hadamard code. For q = 2, r = 1,m → +∞ we have that
N(q,m, r) = m+ 1 and we take a [2m,m+ 1, 2m−1]2 code, which is called the Hadamard codes. If we
also take all these vectors and write them in binary and then transform 0s to −1s, we get 2m+1 vectors
in {−1,+1}2m such that their pairwise inner products are non-negative.

• q = 2, n = 2m. Then N(m, q, r) =
∑r

i=0

(
m
i

)
. Then δ = 2−r. The worst polynomial is x1 · x2 · . . . · xr

for which every xi should be set to 1 in order to differ from the 0 polynomial, which happens with
probability 2−r.

We will now see the notion of a dual code and how Hadamard and Hamming codes are the dual of one
another. Define C⊥ = {x ∈ Fn

q 〈x, y〉 = 0,∀y ∈ C}. For linear codes C which are generated by a parity

check matrix H, then the dual of C is generated by HT .
One can see that the dual of RM(q,m, r) is RM(q,m,m(q − 1) − r). The monomials that generate

all codewords of RM(q,m, r) are of the form Πm
i=1x

ij
i with

∑j
i=1 ij leqr, while the monomials that generate

RM(q,m,m(q − 1)− r)
The following relations hold:

• (Reed-Solomon)⊥ = Reed-Solomon

• (Reed-Muller)⊥ = Reed-Muller

• (Hadamard)⊥ = Hamming

From the above, one concludes that Hamming code is a special case of Reed-Muller code, since its dual is
the Hadamard code and hence a Reed-Muller code and we know that the dual of any Reed-Muller code is a
Reed-Muller code.

The relative distance of Reed-Muller codes can be computed using the Schwartz-Zippel lemma: any two
m-variate polynomials of degree at most r over Fq agree on at most r

q fraction of Fm
q .

Exercise: Using induction, prove the Schwart-Zippel lemma. The lemma is tight for the polynomials 0 and
(x− a1)(x− a2) . . . (x− ar) where a1, . . . , ar are non-zero elements of Fq all different with each other.

5 BCH codes

In this section we describe BCH codes and prove their performance. BCH codes were found in late 50s-early
60s by two dfferent groups of researchers [BRC60, Hoc59].

We start with codes over F2l and we imagine d being a constant, let us say 20. For d = 3 we already
have the Hamming codes, which we proved are optimal. Then we build a Reed-Solomon code over F2l of
distance 20 (note that n = 2l because the alphabet size equals n). This means that k = n− 20 + 1 = n− 19.

CS 229r Essential Coding Theory, Lecture 7-2

Thus, we get a [n, n − 19, 20]n ⊆ Fn
2l . Let this code be C. The BCH code now is just C ∩ Fn

2 , that is the
codewords of C that have only 0 and 1 and no other letter of the alphabet appear.

We will prove that there are “plenty” of such codewords. For that, we look at the parity check matrix
H of C, the i-th column of which is [ai−11 , ai−12 , . . . , ai−1n]T . The question now is how many β ∈ Fn

2 are there
such that βH = 0. The first approach is to use the fact that F2l

∼= Fl
2 and make β live in Fln

2 , while H to be
a n × dl matrix with element in F2. So BCH membership is expressible by dl F2 constraints on β1, . . . , βn.
This gives a [n, n− d log n, d]2 code, since l = log n.

But we can imporve over this approach by considering the inner product of β with the 2nd column:
〈β,H2〉 =

∑
βjaj = 0 and square this expression. This gives

∑
βja

2
j = 0, which means that the second

constraint is enforced by the first! This implies that we can throw away every second constraint. This implies
that we can get a [n, n− d

2 log n+O(1), d]2.
Why are BCH codes important? Because the Hamming bound that states that the number of codewords

is at most 2n

(n
d
2
)
∼ 2n

n
d
2

, which after taking logarithms becomes n− d
2 log n+O(1). This means that BCH codes

achieve the optimal bound up to constants.

References

[BRC60] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and control, 3(1):68–79, 1960.

[FF66] G David Forney and G David Forney. Concatenated codes, volume 11. Citeseer, 1966.

[Hoc59] Alexis Hocquenghem. Codes correcteurs derreurs. Chiffres, 2(2):147–56, 1959.

[Mul54] David E Muller. Application of boolean algebra to switching circuit design and to error detection.
Transactions of the IRE Professional Group on Electronic Computers, (3):6–12, 1954.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300–304, 1960.

CS 229r Essential Coding Theory, Lecture 7-3

