
CS 229r Essential Coding Theory March 9, 2020

Lecture 12
Instructor: Madhu Sudan Scribe: Jenny Kaufmann

1 Folded Reed Solomon Codes

1.1 Definition

Folded Reed Solomon codes are a variant of Reed Solomon codes, defined as follows:

• Choose distinct field elements α1, . . . αn ∈ Fq.

• Choose λ ∈ F∗q of order > k.

• Choose a constant parameter r such that the λ, λ2, . . . λr−1 are distinct.

Messages are polynomials P (x) of degree < k in the variable x, i.e. elements of F<k
q [x]. They are encoded as

[P (αi), P (λαi), P (λ2αi), . . . P (λr−1αi)]
n
i=1. These codewords consist of n blocks of size r; they are elements

of (Fr
q)n.

In particular, in folded Reed-Solomon codes, we count errors differently: whereas in an ordinary RS code,
we count each incorrect character as one error, here we count each block containing an incorrect character
as one error. Intuitively, we are thinking of the blocks as symbols in Fr

q, instead of individual symbols.

Exercise 1. What is the rate of this code?

1.2 Decoding Idea

This code can be list decoded from 1 − R − ε fraction errors where ε = ε(r) → 0 as r → ∞. We will allow
lists of size qr.

The idea behind the decoding is as follows: We are given α1, . . . αn. For each i ∈ [n], we will create a
column, with entries β1

i , . . . β
r
i . Here, the upper index j represents the row. To obtain these βj

i , we evaluate
the polynomial P (λj−1 · x) at the point x = αi.

This idea is based on earlier ideas by Coppersmith and Sudan, who originally devised an algorithm for
list-decoding interleaved codes. The algorithm was improved by Parvaresh and Vardy, who suggested using
polynomials related to each other in some way, and then further improved by Guruswami and Rudra, who
suggested the specific construction we use here. Their reasoning was quite specialized and required that λ
be a primitive element; later other work simplied the algorithms and used cleaner assumptions. In class we
did not hear about this in much detail, but there is more information on the history of this algorithm here.

There is a much better analysis of the same codes - recent analysis: Oε(1), running time Oε(n
2).

Claim 2. The algorithm below will find P if m , #{i | ∀j P (λj−1αi = βj
i } ≥ n

r+1 + rk
r+1 , provided that λ

has high order and are α1, . . . αn distinct.

For each column i corresponding to an element αi, we generate many sub-column blocks via what one might
refer to as “superadditive splintering.” Each subcolumn corresponds to some value α′i = αiλ

j−1 for some
values of j; the values of j may be overlapping between different blocks (hence “superadditive”), and hence
some of the evaluation points in one block are the same as some in others.

CS 229r Essential Coding Theory-1

http://people.csail.mit.edu/madhu/ST13/scribe/lect13.pdf


For each column, we generate r − s blocks, for some choice of s << r (say s2 < r). Then n′ = n(r − s) is
the number of blocks in total.

This conversion from n columns to n′ columns has not changed k: the message space has not changed.

Suppose a column is the original set of columns contains an error, that is, a point at which P (λj−1αi 6= βj
i .

This column splinters into r − s columns in the new version, so if it contains an error, this can produce at
most r−s errors in the new version. Thus, if there is a certain fraction ρ of errors (that is, columns containing
an error) in the original version, there is at most the same fraction ρ of errors in the new version, since only
blocks deriving from columns with errors in the original can have errors in the new version. Equivalently, if
the number of correct evaluation points in the original version is m, the number of correct evaluation points
is m(r − s) in the new version.

It is possible to find P (i.e., correct errors) if the numberm(r−s) of correct evaluation points is≥ n(r−s)
s+1 + sk

s+1 .

Then, if r > s2,

m ≥ n

s+ 1
+

sk

(r − s)(s+ 1)
≤ 2n

s
+
k

r
.

1.3 Decoding Algorithm

The algorithm is as follows: Say we are given a parameter D = n
r+1 −

k
r+1 . Then:

1. Find A0, . . . Ar ∈ Fq[x] not all zero such that ∀i, A0(αi) +
∑r

j=1 β
j
iAj(αi) = 0, where deg(Aj) ≤ D,

deg(A0) ≤ D + k.

2. Find all polynomials P ∈ F<k
q [x] (polynomials of degree at most k) such that:

ΛP (x) , A0(x) +

r∑
j=1

P (λj−1x)Aj(x) ≡ 0. (1)

We must check the following:

Claim 3. A0, . . . Ar exist.

Proof. The number of variables is ≥ (r + 1)D + k, since Aj can have degree up to D for j ∈ [r] and A0 can
have degree up to D + k. If the number of variables is greater than the number of equations, which is n,
then a solution exists. For this reason, we chose D = n

r+1 −
k

r+1 . (Note this means the the lower bound on
m from Claim 2 equals D + k).

Claim 4. If m ≥ D + k then ΛP (x) = 0.

CS 229r Essential Coding Theory-2



Proof. We note that deg(Λp) ≤ D+ k, since A0(x) has degree ≤ D+ k, P (x) has degree ≤ k, and Aj(x) has
degree ≤ D for all j ∈ [r].

If ∀j, P (λj−1αi) = βj
i , then ΛP (αi) = 0. In other words, if the ith column has no errors in it, then ΛP is

zero in that column. This holds because ΛP (x) = A0(x)+
∑r

j=1 P (λj−1x)Aj(x) = A0(x)+
∑r

j=1 β
j
iAj(x) = 0

for x = αi, by the condition on the Aj .

Proof of Claim 2. Our goal is to find the coefficients of P . Say P (x) =
∑
cix

i. Then:

P (λj−1x) =
∑

ci(λ
j−1x)i =

∑
ci(λ

j−1)ixi

So if Aj(x) =
∑
aijx

i, then the coefficient of xt in ΛP (x) is:

a0,t +

r∑
j=1

(
t∑

l=0

cl(λ
j−1)l · at−l,j

)
(2)

So a0,t is a linear form in terms of the coefficients cl which we’re interested in. Conveniently, these linear
forms are naturally triangular: knowing the coefficient of x0 tells us c0, knowing c0 and the coefficient of x1

gives us c1, and in general, the expression (2) gives that the coefficient of xt is:

ct ·

 r∑
j=1

a0,j · (λt)j−1
+ f(c0, . . . ct−1) = 0

Here f is some linear function of the earlier coefficients cl.

Rearranging this equation gives that ct is determined by the earlier cl, except in the case that
∑r

j=1 a0,j(λ
t)j−1 =

0. To deal with this case, define the polynomial B(Y ) =
∑r

j=1 a0,jY
j−1. Then the coefficient of ct vanishes

when B(λt) = 0. But this is a polynomial of degree at most r, so either B is identically zero, or B has at
most r zeroes.

First, we show that we can assume B is not identically zero. Note that the coefficients of the B are the
constant terms of A1, . . . Ar. Suppose all of these have zero constant term. Then A0 must also have zero
constant term, because ΛP (x) is identically zero. So we can just divide the entire set of Aj by x; this will
give a set of polynomials still satisfying the desired properties and the desired degree bound. Repeat as
needed until some Aj has a nonzero constant term; then we obtain B not identically 0.

Therefore, we can assume that B has at most r zeroes. Moreover, none of the λt are the same (they are
distinct since λ has high order), so the set B(λ0), B(λ1), . . . B(λk−1) contains at most r zeroes. Hence, there
are at most r values of t for which we cannot determine the correct value of ct, so in particular, we have
list-decoded the message to within qr possible codewords.

There is an extension of this problem to the following setting, which is important for many applications of
this code: Given r-dimensional vectors β1, . . . βt, with many possibilties for each column, find a polynomial
which passes through some block on each one of these columns - or even k/rn of the columns. This is useful
for a problem known as “list recovery”: in particular, it gives that for all ε there exists q such that for all
R, δ s.t. R + δ ≤ 1 + ε there exist q-ary codes of rate R, list-decodable from δ fraction errors, for infinite
many n.

CS 229r Essential Coding Theory-3


	Folded Reed Solomon Codes
	Definition
	Decoding Idea
	Decoding Algorithm


