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1 ABNNR construction

The ABBNR construction, due to Alon, Brooks, Naor, Naor, and Roth, takes a weak (low-distance) error-
correcting code and converts it into a strong (high-distance) code.

In order to construct this code, we will need a d-regular bipartite expander graph B = (L,R,E), where
|L| = |R| = n.

For any x = (x1, . . . , xn) ∈ Fn2 , label the vertices in L with x1, . . . , xn, in order. Then, each vertex j ∈ R
is adjacent to d vertices in L, which each have a corresponding label xi. Then, associate with vertex j the
sequence of all such xi, which we call yj . Note that yj ∈ Fd2, so let y = (y1, . . . , yn) ∈ (Fd2)n.

Note that the map which takes x to y is not itself a good error-correcting code, since if x has a single 1
then y will only have d nonzero entries. Instead, we will pick x from C0 ⊂ Fn2 , where C0 is a code with modest
distance. For example, we can fix an explicit linear code C0 with parameters δ(C0) = 0.01, R(C0) = 0.5.
Picking d to be very large (much larger than 1/δ(C0), the code is then the set of all y corresponding to
x ∈ C0. To summarize, the ABBNR code is the composition of two maps:

m ∈ F0.5n
2

C0−−→ x ∈ Fn2
ABNNR−−−−−→ y ∈ (Fd2)n

This code has rate R = 0.5/d.

What is the distance of this code? This is a linear code, so we can bound the number of zeroes in any
codeword. Suppose that for some m,x, y, we have that y has zeroes in all indices corresponding to vertices
D ⊂ R. Then, all neighbors of vertices in D have label equal to zero. But since C0 is a code with relative
distance 0.01, this means that the neighborhood Γ(D) has size at most 0.99n.

Exercise 1. Show that one can pick B to be an appropriate expander graph so that if |Γ(D)| < 0.99n, then
|D| is at most (1/d+ ε)n, for any desired ε.

Thus, |D| is at most roughly n/d, so any nonzero codeword has at most n/d zeroes. Therefore, the code
has relative distance approximately 1− 1/d.

Therefore, the ABNNR construction gives a [n, 0.5n/d, (1 − 1/d)n]2d -code. Note that if we pick C0 to
have a better rate (since the distance could have been any positive constant), we can push the rate of the
ABNNR code to be arbitrarily close to n/d.

Exercise 2. Show that by concatenating with an appropriate binary code, the ABNNR code can be used to
produce a strongly explicit [n, k, (1/2− ε)n]2-code, where n = O(k/ε3).

2 AEL codes

The ABNNR codes have good distance, but have the drawback fo having small rate. AEL codes are a
generalization of ABNNR codes that have good rates.

We can view the second step of the ABBNR code as first encoding each bit of x with the repetition code
(which takes 0, 1 to 0d, 1d), and then permuting the resulting bits according to a fixed permutation in order
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to get y. We will generalize to use codes other than repetition codes.

Suppose that we have some linear [d, `, δd]2-code C; this will be the analog of the repetition code. Then,
if we have x ∈ (F`2)n, we obtain z ∈ (Fd2)n by applying C to each of the elements of x. Then, obtain y ∈ (Fd2)n

by permuting the bits in z according to some fixed permutation. Note that we can form a bipartite graph
B = (L,R,E) whose vertices are the elements of z and y, and with an edge between elements that share a
bit (i.e., where some two bits map to each other via the permutation).

Finally, to ensure that x has enough nonzero elements, we will have a precoding step as before. Let C0

be a linear code on the alphabet F`2 with rate 0.5 and relative distance 0.01. Then, we obtain x by encoding
a message m ∈ (F`2)0.5n according to C0. Then the final AEL code is formed by the map from m to y, as
illustrated in the following diagram.

This code has rate 0.5`/d, but as before, by picking a better code C0 we can push this to (1− o(1))`/d,
which is roughly the original rate of C.

To analyze the distance of the AEL code, consider some nonzero m,x, z, y; we will bound the number of
zeroes in y. Again let D ⊂ R be the set of all vertices of B whose corresponding elements of y are nonzero.
Now, note that at least 0.01n elements of x are nonzero, so at least 0.01n elements of z have at most (1−δ)d
zero bits. These elements can have at most (1 − δ)d neighbors in D, since otherwise they must share a
nonzero bit with D.

Thus, defining Γ≤(1−δ)d(D) to be the set of vertices in L that have at most (1− δ)d neighbors in D, we
must have |Γ≤(1−δ)d(D)| ≥ 0.01n. However, we can pick B so that any such D has size at most roughly
(1− δ)n, and permute the bits in any manner consistent with B. Then, y can have at most (1− δ)n zeroes,
so the AEL code has distance roughly δn.

Exercise 3. Fill in the details of picking B in the above distance analysis.

Thus, the AEL code allows us to get a code with the same rate and relative distance as C, but with much
larger n, at the expense of having a larger alphabet.

Guruswami and Indyk later modified this construction slightly to create a linear-time decodable code
with the same parameters.
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