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Lecture 20
Instructor: Madhu Sudan Scribe: Louis Golowich

1 Outline

In this lecture we covered local decodability/correctability1, as well as local testability. Local decodability
refers to decoding the message at given indices, whereas local testability refers to testing if a given string is
close to a codeword. These concepts are “local” because they only allow access to the input through a limited
number of oracle queries. We present local decodability and local testability results for the Hadamard and
Reed-Muller codes. These concepts have applications in PCPs.

2 Local Decodability

In this lecture we think of the space Σn as the space of functions f : [n]→ Σ, so that in particular codewords
will be denoted by functions.

Definition 1. A code C ⊆ Σn is (`, ε)-locally correctible if there exists a decoder D such that for all

• g ∈ Σn such that there exists some f ∈ C with δ(f, g) < ε,

• x ∈ [n],

Dg(x) makes ` queries into g and outputs f(x) with probability greater than 1
2 .

The decoder Dg(x) above takes two inputs: an explicit position x, as well as a random access oracle for
g, which should be thought of as a corrupted codeword. The algorithm Dg(x) must be randomized, as the
corruption model in Definition 1 is adversarial, so an adversary could corrupt the specific ` positions queried
by any deterministic algorithm. The definition allows for any success probability greater than 1

2 , as this
probability can be amplified by running the algorithm multiple times in the standard way. Note that we will
not place any restrictions on running times of algorithms in this lecture, so that complexity is determined
just by the locality `.

2.1 Hadamard Code

As a reminder, the Hadamard code Hn ⊆ {f : Fn2 → F2} is the set of all linear functions, that is,

Hn =

{
f : Fn2 → F2

∣∣∣∣∣∃α1, . . . , αn ∈ F2 s.t. f(x) =

n∑
i=1

αixi ∀x1, . . . , xn ∈ Fn2

}
.

Locally, Hn is characterized by the property that f ∈ Hn if and only if for all x, y ∈ Fn2 , it holds that
f(x) + f(y) = f(x + y). Therefore f(x) can be recovered from f(y) and f(x + y). To apply this idea, let’s
first reiterate the local decoding problem: we are given

• oracle access to g : Fn2 → F2 such that there exists some f ∈ Hn with δ(f, g) < ε, and

• a position x ∈ Fn2 .

1We treat the terms local decodability and local correctability as equivalent here, but in the literature there is a distinction,
and the concept we discuss is local correctability.
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We want to compute f(x). Note that the inputs g and x can be provided by an adversary subject to the
above conditions. The local decoder Dg(x) will work as follows:

1. Pick y ∈ Fn2 at random.

2. Output g(x+ y)− g(y).

Claim 2. Pr[Dg(x) 6= f(x)] < 2ε.

Proof. It follows by definition that Pry[g(y) 6= f(y)] < ε. Similarly, it holds that Pry[g(x+y) 6= f(x+y)] < ε
because x + y is distributed uniformly over Fn2 . The result follows from a union bound with these two
inequalities, as f(x+ y)− f(y) = f(x) for any f ∈ Hn.

Thus we have shown:

Theorem 3. Hn is (2, 14 )-locally correctible.

Note that 1
4 in the theorem above is optimal, as Hn has distance 1

2 , and unique decoding is at best
possible for error rates at half the distance.

2.2 Reed-Muller Codes

Recall that Reed-Muller codes are defined by

RM(q, r,m) = {f : Fmq → Fq|f polynomial, deg(f) ≤ r}.

In this lecture we assume r < q, so that no additional constraints on degrees are needed. We will show that
Reed-Muller codes are locally decodable, and we will be happy to get locality bounded above by q; note that
q is often significantly smaller than |Fmq |.

We take advantage of the local properties of Reed-Muller codes by restricting the domain Fmq to lines.
Specifically, for a, b ∈ Fmq , let `a,b = {at+ b|t ∈ Fq}, so that the restriction of f : Fmq → Fq to `a,b is given by
f |`a,b

(t) = f(at+b). The restriction of an m-variate polynomial of degree r to a line is a 1-variate polynomial
of degree r, or more formally,

f ∈ RM(q, r,m) =⇒ f |`a,b
∈ RM(q, r, 1).

This observation is useful because elements of RM(q, r, 1) are (r + 1)-local: the values at r + 1 locations
determine the values everywhere.

As an aside, if r < q
2 , then

f ∈ RM(q, r,m) ⇐= f |`a,b
∈ RM(q, r, 1) ∀a, b. (1)

Exercise 4. Prove the above statement using induction on m.

Proof. It is sufficient to show that for every f ∈ RM(q, r,m), there exists some line `a,b such that deg f |`a,b
=

r, as then the right hand side of (1) will not hold for any r′ < r. This result holds for m = 1 using a = 1,
b = 0. For m = 2, without loss of generality let f(x, y) = xe1ye2(csx

s + cs−1x
s−1y + · · · + c0y

s) + g(x, y),
where e1 + e2 + s = r and cs 6= 0, and g(x, y) is a polynomial of degree at most r − 1. Set a = (a1, 1)
and b = (0, 0). Then f |`a,b

= (csa
s
1 + cs−1a

s−1
1 + · · · + c0)ae11 t

r + g(a1t, t), which has degree r as long as

(csa
s
1 + cs−1a

s−1
1 + · · ·+ c0)ae11 6= 0. But because cs 6= 0, this polynomial has degree s+ e1 ≤ r < q, so there

exists some a1 ∈ Fq that is not a root of the polynomial. Then deg f |`a,b
= r for this choice of a1. The

proof can now proceed using induction on m, with m = 1, 2 as the base cases. For the inductive hypothesis,
assume that for all m′ < m, every r′, and every f ′ ∈ RM(q, r′,m′), there exists some line `a′,b′ such that
deg f ′|`a′,b′ = r′. For a given f ∈ RM(q, r,m), assume without loss of generality that x1 lies in some degree-r
term in f , so that f can be written in the form

f(x1, . . . , xm) = xe11 (csx
s
1gs(x2, . . . , xm)+cs−1x

s−1
1 gs−1(x2, . . . , xm)+· · ·+c0g0(x2, . . . , xm))+h(x1, . . . , xm),
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where e1 + s ≤ r, cs 6= 0, each gi is a polynomial of degree r − i − e1, and h is a polynomial of degree
at most r − 1. For any line `a,b it holds that deg xe11 |`a,b

= e1 and deg h|`a,b
≤ r − 1, so in order for

deg f |`a,b
= r, it is sufficient to choose a, b so that deg(csx

s
1gs + · · · + c0g0)|`a,b

= r − e1. By the inductive
hypothesis, there exist choices of a′ = (a′2, . . . , a

′
m), b′ = (b′2, . . . , b

′
m) such that deg gs|`a′,b′ = r − s − e1.

Then along this line `a′,b′ , the polynomial csx
s
1gs + · · · + c0g0 restricts to a degree-(r − e1) polynomial in

two variables x1, t. Thus again applying the inductive hypothesis gives that there is some choice of a, b, such
that deg(csx

s
1gs + · · ·+ c0g0)|`a,b

= r − e1, and thus deg f |`a,b
= r, completing the inductive step.

Theorem 5. For all m, r < q − 1, RM(q, r,m) is (r + 1, O( 1
r+1 ))-locally correctible.

Proof. Given g : Fmq → Fq such that δ(f, g) < ε for some f , and given x ∈ Fmq , the local decoding algorithm
proceeds as follows:

1. Pick a random y ∈ Fmq .

2. Find the unique polynomial p ∈ F<r+1
q [X] such that p(i) = g|`y,x

(i) for all i = 1, . . . , r + 1.

3. Output p(0).

The algorithm above uses r+ 1 calls to the oracle for g to compute g|`y,x(i) for 1 ≤ i ≤ r+ 1. Because x+ iy
is uniformly distributed over Fmq for each i, it follows that Pry[f(x+ iy) 6= g(x+ iy)] < ε. Applying a union
bound over all i gives that Pry[∃i : f(x + iy) 6= g(x + iy)] < (r + 1)ε, which implies that Pry[p 6= f |`y,x

] <
(r + 1)ε. Thus the decoding algorithm fails with probability over y less than (r + 1)ε, which is less than 1

2
for ε = O( 1

r+1 ).

In fact a stronger result holds:

Theorem 6. If r = o(q), then RM(q, r,m) is (O(r), 14 − o(1))-locally correctible.

Exercise 7. Prove this result.

Sketch of Proof Consider the case where 1
4 − ε fraction errors are introduced for some ε > 0. Therefore

for any codeword f ∈ RM(q, r,m), let g : Fmq → Fq satisfy δ(f, g) < 1
4 − ε. Consider the following local

decoding algorithm, which takes an input parameter C, as well as x ∈ Fmq :

1. Pick a random y ∈ Fmq and a random subset S ⊂ Fq of size C.

2. Find the polynomial p ∈ F<r+1
q [X] that agrees with g|`y,x

for as many t ∈ S as possible.

3. Output p(0).

Because the lines `y,x for y ∈ Fmq form a partition of Fmq \ {x}, it follows that with probability ≥ 1
2 + ε

2 ,

the choice of y is such that g|`y,x agrees with f |`y,x on ≥ 1
2 + ε

2 fraction of points in `y,x. Therefore as
long as ε is chosen such that ε

2q > r, it follows that no polynomial p ∈ F<r+1
q [X] such that p 6= f |`y,x

can

agree with g|`y,x
at ≥ 1

2 fraction points in `y,x, as any two distinct polynomials in F<r+1
q [X] agree in at

most r locations. Therefore for a sufficiently large choice of ε = ε(q) = o(1) and of C = C(r) = O(r),
the probability that the decoding algorithm above chooses p 6= f |`y,x

is exponentially small in r, as having
p 6= f |`y,x would require the set S to contain a significantly smaller than expected fraction of points t ∈ Fq
for which f |`y,x(t) = g|`y,x(t). Thus the overall probability that p = f |`y,x and therefore that p(0) = f(x) is
at least 1

2 + ε
2 − o(ε), which is greater than 1

2 , as desired.

The 1
4 in the above theorem is not theoretically optimal, as the alphabet can be large. However, it is at

least a constant unlike in Theorem 5.
Note that both the Hadamard and Reed-Muller local decoding algorithms involve restricting to a low-

dimensional subspace that preserves digree. For the Hadamard code the restriction was to a 2-dimensional
linear subspace, while for Reed-Muller it was to a 1-dimensional affine subspace.
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3 Local Testability

Definition 8. A code C ⊆ Σn is (`, α)-locally-testable if there exists a tester T such that:

• T g accepts with probability 1 if g ∈ C,

• T g rejects with probability at least αδ(g, C), where δ(g, C) = minf∈C{δ(f, g)},

• T g makes ` queries to the random acces oracle for g.

Theorem 9. Hn is (3, 1
10 )-locally-testable, and RM(q, r,m) is (r + 2, 1

r2 )-locally testable.

For both the Hadamard and Reed-Muller codes, the testing algorithm is as follows:

• Pick x at random.

• Accept g if g(x) = Dg(x).

Therefore in both cases, local testing uses one more query than local decoding.

Proof that Hn is (3, 1
10 )-locally-testable. Fix g : Fn2 → F2, and let ε(g) = Prx,y[g(x) + g(y) 6= g(x+ y)] be the

probability of the test returning a rejection. By definition ε(g) = 0 if g ∈ Hn. Therefore we need to show
that ε(g) ≥ 1

10δ(g,Hn). For r ∈ Fn2 , let Dg(x; r) = g(x + r) − g(r). Define f(x) to be the mode of the set
{Dg(x; r)|r ∈ Fn2}, with ties broken arbitrarily.

Lemma 10. δ(f, g) ≤ 2ε(g).

Proof. If f(x) 6= g(x), then it follows by the definition of f that Pry[g(x) 6= g(x+y)−g(y)] ≥ 1
2 . Therefore if

there were more than 2ε(g) values of x for which f(x) 6= g(x), then it would follow that ε(g) = Prx,y[g(x) 6=
g(x+ y)− g(y)] > 2ε(g) · 12 = ε(g), a contradiction.

The following lemma, which we will not prove, provides the key idea in the proof.

Lemma 11. For all x ∈ Fn2 ,
Pr
r1,r2

[Dg(x; r1) 6= Dg(x; r2)] ≤ 2ε(g).

Corollary 12. For all x,
Pr
r

[f(x) 6= Dg(x; r)] ≤ 2ε(g).

Exercise 13. Prove this corollary.

Proof. It is sufficient to show the following set-theoretic statement: for any multiset S of size N with mode
r∗,

Pr
r∈S

[r 6= r∗] ≤ Pr
r1,r2∈S

[r1 6= r2],

where r, r1, r2 are drawn uniformly from S. Let m1 > m2 > · · · > md be the multiplicies of the distinct
elements of S, so that m1 is the multiplicity of r∗. Then

Pr
r∈S

[r 6= r∗] =
N −m1

N

=

d∑
i=1

mi

N
· N −m1

N

≤
d∑
i=1

mi

N
· N −mi

N

= Pr
r1,r2∈S

[r1 6= r2].

Now the corollary follows letting S = {Dg(x; r)|r ∈ Fn2} with r∗ = f(x).
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Lemma 14. If ε(g) < 1
10 , then for all x, y ∈ Fn2 it holds that f(x) + f(y) = f(x+ y), so f ∈ Hn.

Now Lemmas 10 and 14 imply that if ε(g) < 1
10 then ε(g) ≥ 1

2δ(g, f) ≥ 1
2δ(g,Hn), while if ε(g) ≥ 1

10
then ε(g) ≥ 1

10 · 1 ≥
1
10δ(g,Hn). Thus in either case ε(g) ≥ 1

10δ(g,Hn), so Hn is (3, 1
10 )-locally-testable.

The statement regarding Reed-Muller codes in Theorem 9 has a similar but more complex proof.

4 Applying Reed-Muller Locally Testable and Locally Decodable
Codes to Probabilistically Checkable Proofs (PCPs)

As an example, we define a PCP for graph 3-coloring:

Example 15 (Graph 3-Coloring). 3-col ∈ PCP(`) if there exists a polynomial time verifier V accessing a
proof π ∈ {0, 1}∗ such that for all graphs G,

• if G is 3-colorable then there exists some π ∈ {0, 1}poly(|G|) such that V π(G) = 1 with probability 1,

• if G is not 3-colorable then for all π, it holds that Pr[V π(G) = 1] ≤ 1
2 ,

• V makes ` queries to the proof π.

As an intermediate step, we consider a PCP for Reed-Solomon codes. The verifier V is now given oracle
access to g : Fq → Fq as well as to a proof π, and must satisfy:

• There exists some π such that Pr[V g,π(k) = 1] = 1 if g is a polynomial with deg(g) ≤ k.

• It holds for all π that Pr[V g,π(k) = 1] ≤ 1
2 if δ(f, g) ≥ .1 for all f such that deg(f) ≤ 2k.

• The total number of queries to g and π is ` = polylog(|H|).
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