CS 229r Essential Coding Theory April 20, 2020

Lecture 22
Instructor: Madhu Sudan Scribe: Elbert Du

1 Coding in Complexity Theory

1.1 Pseudorandomness

Goal: We wish to be able to use a pseudorandom generator G which takes as input a small number of random
bits and turn it into a large number of bits indistinguishable from random.

Definition 1. We define the generator G to be e-fooling if
Pr[A(z,R) =1] = ggr[A(x,G(z)) =1]
In general, we would want for all poly time A but here we will only require it for a single poly time A.
The main parameter of G is then the seed length (the length of z in the equation above).

Today, we’ll be using codes to get an approximate solution for Max t-SAT.
Input: Cy,...Cy, where we have variables 1,2, ... 2, and C; = y1 Vy2 V- --Vy; where y; = -2y, or y; = o,
for some k.
Output: find assignment satisfying as many clauses as possible.

Random assignment: satisfies (1 — 27%) m clauses on expectation since each literal has % chance to be

satisfied independent of the others within a clause.

Definition 2. A generator G : {0,1}% — {0, 1}" is t-wise independent if for all T C [n],|t| < t, then

G(2)|r ~ Unif({0,1}")
when z ~ Unif({0,1}%)

If 3 a t-wise independent generator G, then we get a m(1 — 27%) approximator to Max t-SAT in time
29m by just testing out all the seeds.

Lemma 3. Given a linear code C C FY with A(Ct) > t, then the encoding function E of C is t-wise
independent.

Proof. We know from before that E(m)|s is uniform on the image for any S C [n]. Now, we claim that if
A(CH) > ¢,
Im(B(m)|r) = {0,1}"
which would complete our proof.
Suppose for the sake of contradiction some = € {0,1}7 is not in the image. Then, there is some codeword
with weight ¢ in C since it is generated by the parity check matrix of C'. This violates the assumption that

C* has distance greater than ¢ so such an 2 does not exist. Hence, all 2 € {0,1}7 is in the image and we
are done. O
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Thus, we want a small code such that the dual has distance . What’s the best we can do?

Suppose C* is the BCH code of distance ¢ 4+ 1. Then, we get parameters C+ = [n,n — (§)logn,t + 1]
so C =[n,(3)logn,t+ 1]y s0 S = (L)logn

Therefore this gives us a deterministic n*/?m time approximation algorithm for max t-SAT

Now, can we do any better? To do so, we will introduce a notion of bias:

Definition 4. G : F5 — F} is e-biased if for every linear function L : F} — Fo, we have

xw%r'r‘m'f[ﬁ(x) - 1] B ZNEI;Lif[L(G(Z)) - 1] s¢€

We say that G is e-biased on L if it satisfies the definition for the particular function L

Definition 5. G : {0,1}% — {0,1}" is d-almost t-wise independence if VT C [n],|T| <t we have

{G@)r} znvnis ~s Unif({0,137)
Note: using one of these gives us a (1 —2~* —§) approximation in time 2°m for the same reason as above
Lemma 6. If G : F5 — F} is e-biased, then G(z) ~an. Unif({0,1}")
Proof. So far, we have for any nonzero linear function F,

PHEGE) = 1] - 5| = IPHE(G(E) = 1] - Pr{L(n) = 1] <

So |E.[(-1)LEE]] < 2¢

What we want:

by

Y

1
Pr[G(z) = y] — 271‘ < 222"

If we can show that each value in the sum is at most 2e, we're done.

Now, let

folr) = g S(~1)5

c
Note that dp(z) = 1 if = 0. However, if z # 0 then all the terms cancel out so do(x) = 0.

Similarly, we can define d,(z) = 5 > (—1)*(*~%) and get 6,(y) = 1 and §,(z) =0 for z # y

Now, we want to show

1
Pr[G(z) =y] — on <2

which is true iff )
5G] - 55| < 2

and by the definition of d,, this means what we want is
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1
L(G(z)—
E[(-1)5(C0) )] - | < 2
and as we work through the equations, we eventually arrive at a statement which follows from G being
e-biased
O

Lemma 7. If G is e-biased, then ¥V t G is (€2!)-almost t-wise independent.

Proof. Since G is e-biased, then VT' G|r is e-biased so G is almost uniform. O

1

Now, if we just set § < 5~ and ¢ < ﬁ, then the d-almost t-wise independence won’t give us any

margin for error and we get the desired generator.

Definition 8. A code is c-balanced if the distance is between (% te)N

Lemma 9. If G is a generator of e-balanced code, then the encoding given my i — it

e-biased.

column of G is

Proof. Code is generated by k x N matrix M, take the i*" column to get a generator G : [N] — FX.
What does linear test look like? Consider multiplying a vector [a, . .. o] by M, we get aM, the encoding
of the vector. For it to be balanced, the proportion of 1s and 0Os must be within % + ¢ so in particular the

it" coordinate should be uniform over the choice of a O
Conclusion: we previously constructed explicit codes w/ N = 5’2 and ’;—z so for our setting, set K = n
and € = 57—
2t

25 = N = 22'm?n? = O(2**m*) so runtime is O(2%m?)

Now, what if we combined the two things we constructed today?

Lemma 10. Let Gy be e-biased and G5 be t-wise independent and linear. Then G = Gy 0 Gy is €2t -almost
t-wise independent.

Proof. Since G4 is t-wise independent, G(w)|r has no non-trivvial dependencies among the output regard-
less of distribution of w.

Now, if G5 fools some linear £, then £(G2(w)) is some parity of bits of w so
L#A0 = (LoG2)#0

Furthermore, we know that £ o G5 is a linear test since both are linear and G fools all linear tests so
(G3 0 Gy)|r is e-biased. O

Applying this we get a runtime of 2; log?n - n for a (1 — 27 — £)-approximation

2 Exercises

1. How can you use random assignment to get a similar bound on the number of clauses satisfied in Max
t-SAT with high probability?

Solution: Consider the probability that we get a value greater than (1 — 27 — g)m.
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If we have p probability of getting greater than (1—27%—¢)m and 1—p of getting at most (1—2"*—¢&)m,
then we need the expected value to be (1 —27)m so we have

pm+(1—-p)(1—-2""—e)ym>(1-2"m

L>2tE

1—p

if we have ¢ = 27!, then p > % We can now repeat this process k times and take the maximum for a
probability of 1 — 27% of getting a result of at least (1 — 2'~")m

. Complete the proof of lemma 6.
Solution: in the notes Madhu posted.

e-bias of G means that the difference between distribution of £L(G(z)—y) and L(x—y) for x chosen uni-
formly is e. Each difference in the distributions can change the value of the sum by at most 2 as it either
changes a value from —1 to 1 or vice versa or it does nothing and the number of differences is at most ¢.

This tells us that the difference between E[(—1)%(¢(Z)=%] and E[(—~1)*(*=¥)] is at most 2c. Over
random z Pr[L(z —y) = 0] — Pr[L(x —y) = 1] = 0 if £ is non-zero and 1 if £ is zero so

E[(—1)“@¥] = Pr[£L = 0] = —

which gives us the desired result.
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