
CS 229r Essential Coding Theory April 20, 2020

Lecture 22
Instructor: Madhu Sudan Scribe: Elbert Du

1 Coding in Complexity Theory

1.1 Pseudorandomness

Goal: We wish to be able to use a pseudorandom generator G which takes as input a small number of random
bits and turn it into a large number of bits indistinguishable from random.

Definition 1. We define the generator G to be ε-fooling if

PR[A(x,R) = 1] ≈ εPr
z

[A(x,G(z)) = 1]

In general, we would want for all poly time A but here we will only require it for a single poly time A.

The main parameter of G is then the seed length (the length of z in the equation above).

Today, we’ll be using codes to get an approximate solution for Max t-SAT.
Input: C1, . . . Cm where we have variables x1, x2, . . . xn and Cj = y1∨y2∨· · ·∨yt where yi = ¬xk or yi = xk
for some k.
Output: find assignment satisfying as many clauses as possible.

Random assignment: satisfies (1− 2−t)m clauses on expectation since each literal has 1
2 chance to be

satisfied independent of the others within a clause.

Definition 2. A generator G : {0, 1}S → {0, 1}n is t-wise independent if for all T ⊆ [n], |t| ≤ t, then

G(z)|T ' Unif({0, 1}T )

when z ∼ Unif({0, 1}S)

If ∃ a t-wise independent generator G, then we get a m(1 − 2−t) approximator to Max t-SAT in time
2Sm by just testing out all the seeds.

Lemma 3. Given a linear code C ⊆ Fn2 with ∆(C⊥) > t, then the encoding function E of C is t-wise
independent.

Proof. We know from before that E(m)|S is uniform on the image for any S ⊆ [n]. Now, we claim that if
∆(C⊥) > t,

Im(E(m)|T ) = {0, 1}T

which would complete our proof.

Suppose for the sake of contradiction some x ∈ {0, 1}T is not in the image. Then, there is some codeword
with weight t in C⊥ since it is generated by the parity check matrix of C. This violates the assumption that
C⊥ has distance greater than t so such an x does not exist. Hence, all x ∈ {0, 1}T is in the image and we
are done.
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Thus, we want a small code such that the dual has distance t. What’s the best we can do?

Suppose C⊥ is the BCH code of distance t+ 1. Then, we get parameters C⊥ = [n, n− ( t2 ) log n, t+ 1]2
so C = [n, ( t2 ) log n, t+ 1]2 so S = ( t2 ) log n

Therefore this gives us a deterministic nt/2m time approximation algorithm for max t-SAT

Now, can we do any better? To do so, we will introduce a notion of bias:

Definition 4. G : FS2 → Fn2 is ε-biased if for every linear function L : Fn2 → F2, we have∣∣∣∣ Pr
x∼Unif

[L(x) = 1]− Pr
z∼Unif

[L(G(z)) = 1]

∣∣∣∣ ≤ ε
We say that G is ε-biased on L if it satisfies the definition for the particular function L

Definition 5. G : {0, 1}S → {0, 1}n is δ-almost t-wise independence if ∀T ⊆ [n], |T | ≤ t we have

{G(z)|T }Z∼Unif ≈δ Unif({0, 1}T )

Note: using one of these gives us a (1−2−t− δ) approximation in time 2Sm for the same reason as above

Lemma 6. If G : FS2 → Fn2 is ε-biased, then G(z) ≈2nε Unif({0, 1}n)

Proof. So far, we have for any nonzero linear function F ,∣∣∣∣Pr[L(G(z)) = 1]− 1

2

∣∣∣∣ = |Pr[L(G(z)) = 1]− Pr[L(x) = 1]| ≤ ε

So
∣∣Ez[(−1)L(G(z))]

∣∣ ≤ 2ε

What we want: ∑
y

∣∣∣∣Pr[G(z) = y]− 1

2n

∣∣∣∣ ≤ 2ε2n

If we can show that each value in the sum is at most 2ε, we’re done.

Now, let

δ0(x) =
1

2n

∑
L

(−1)L(x)

Note that δ0(x) = 1 if x = 0. However, if x 6= 0 then all the terms cancel out so δ0(x) = 0.

Similarly, we can define δy(x) = 1
2n

∑
L(−1)L(x−y) and get δy(y) = 1 and δy(x) = 0 for x 6= y

Now, we want to show ∣∣∣∣Pr[G(z) = y]− 1

2n

∣∣∣∣ ≤ 2ε

which is true iff ∣∣∣∣E[δy(G(z)]− 1

2n

∣∣∣∣ ≤ 2ε

and by the definition of δy, this means what we want is
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∣∣∣∣E[(−1)L(G(z)−y)]− 1

2n

∣∣∣∣ ≤ 2ε

and as we work through the equations, we eventually arrive at a statement which follows from G being
ε-biased

Lemma 7. If G is ε-biased, then ∀ t G is (ε2t)-almost t-wise independent.

Proof. Since G is ε-biased, then ∀T G|T is ε-biased so G is almost uniform.

Now, if we just set δ < 1
2m and ε ≤ 1

2t2m , then the δ-almost t-wise independence won’t give us any
margin for error and we get the desired generator.

Definition 8. A code is ε-balanced if the distance is between ( 1
2 ± ε)N

Lemma 9. If G is a generator of ε-balanced code, then the encoding given my i → ith column of G is
ε-biased.

Proof. Code is generated by k ×N matrix M , take the ith column to get a generator G : [N ]→ FK2 .
What does linear test look like? Consider multiplying a vector [α1, . . . αk] by M , we get αM , the encoding

of the vector. For it to be balanced, the proportion of 1s and 0s must be within 1
2 ± ε so in particular the

ith coordinate should be uniform over the choice of α

Conclusion: we previously constructed explicit codes w/ N = k
ε3 and k2

ε2 so for our setting, set K = n
and ε = 1

2tm
2S = N = 22tm2n2 = O(22tm4) so runtime is O(22tm5)

Now, what if we combined the two things we constructed today?

Lemma 10. Let G1 be ε-biased and G2 be t-wise independent and linear. Then G = G2 ◦G1 is ε2t-almost
t-wise independent.

Proof. Since G2 is t-wise independent, G2(w)|T has no non-trivvial dependencies among the output regard-
less of distribution of w.

Now, if G2 fools some linear L, then L(G2(w)) is some parity of bits of w so

L 6= 0 =⇒ (L ◦G2) 6= 0

Furthermore, we know that L ◦ G2 is a linear test since both are linear and G1 fools all linear tests so
(G2 ◦G1)|T is ε-biased.

Applying this we get a runtime of 22t

ε2 log2 n · n for a (1− 2−t − ε)-approximation

2 Exercises

1. How can you use random assignment to get a similar bound on the number of clauses satisfied in Max
t-SAT with high probability?

Solution: Consider the probability that we get a value greater than (1− 2−t − ε)m.
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If we have p probability of getting greater than (1−2−t−ε)m and 1−p of getting at most (1−2−t−ε)m,
then we need the expected value to be (1− 2−t)m so we have

pm+ (1− p)(1− 2−t − ε)m ≥ (1− 2−t)m

p

1− p
≥ 2tε

if we have ε = 2−t, then p ≥ 1
2 . We can now repeat this process k times and take the maximum for a

probability of 1− 2−k of getting a result of at least (1− 21−t)m

2. Complete the proof of lemma 6.

Solution: in the notes Madhu posted.

ε-bias of G means that the difference between distribution of L(G(z)−y) and L(x−y) for x chosen uni-
formly is ε. Each difference in the distributions can change the value of the sum by at most 2 as it either
changes a value from −1 to 1 or vice versa or it does nothing and the number of differences is at most ε.

This tells us that the difference between E[(−1)L(G(z)−y)] and E[(−1)L(x−y)] is at most 2ε. Over
random x Pr[L(x− y) = 0]− Pr[L(x− y) = 1] = 0 if L is non-zero and 1 if L is zero so

E[(−1)L(x−y)] = Pr[L = 0] =
1

2n

which gives us the desired result.

CS 229r Essential Coding Theory-4


	Coding in Complexity Theory
	Pseudorandomness

	Exercises

