
Dynamic Ham-Sandwich Cuts in the Plane∗

Timothy G. Abbott† Michael A. Burr‡ Timothy M. Chan§

Erik D. Demaine† Martin L. Demaine† John Hugg¶

Daniel Kane‖ Stefan Langerman∗∗ Jelani Nelson†

Eynat Rafalin†† Kathryn Seyboth¶ Vincent Yeung†

Abstract

We design efficient data structures for dynamically maintaining a ham-sandwich cut of two
point sets in the plane subject to insertions and deletions of points in either set. A ham-
sandwich cut is a line that simultaneously bisects the cardinality of both point sets. For general
point sets, our first data structure supports each operation in O(n1/3+ε) amortized time and
O(n4/3+ε) space. Our second data structure performs faster when each point set decomposes
into a small number k of subsets in convex position: it supports insertions and deletions in
O(log n) time and ham-sandwich queries in O(k log4 n) time. In addition, if each point set has
convex peeling depth k, then we can maintain the decomposition automatically using O(k log n)
time per insertion and deletion. Alternatively, we can view each convex point set as a convex
polygon, and we show how to find a ham-sandwich cut that bisects the total areas or total
perimeters of these polygons in O(k log4 n) time plus the O((kb) polylog(kb)) time required to
approximate the root of a polynomial of degree O(k) up to b bits of precision. We also show
how to maintain a partition of the plane by two lines into four regions each containing a quarter
of the total point count, area, or perimeter in polylogarithmic time.

1 Introduction

Finding a ham-sandwich cut is a well-studied problem with efficient solutions in many contexts;
see, e.g., [Ede87, LMS94, Sto91]. In general, a ham-sandwich cut of two subsets S1 and S2 of the
plane R2 is a line that simultaneously bisects both sets according to some measure µ. If S1 and S2

are discrete sets of points, the measure µ is usually the number of points; see Figure 1(a). If S1

∗Preliminary versions of this paper appeared in the 17th Canadian Conference on Computational Geometry
[ADD+05] and in the 15th Annual Fall Workshop on Computational Geometry [BHR+05].

†Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St.,
Cambridge, MA 02139, USA, {tabbott,edemaine,mdemaine,minilek,vshyeung}@mit.edu.

‡Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA,
burr@cims.nyu.edu. Partially supported by NSF grant CCF-0431027.

§School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, tmchan@uwaterloo.ca.
Supported by NSERC.

¶Department of Computer Science, Tufts University, Medford, MA 02155, USA, {jhugg,kseyboth}@cs.tufts.edu.
Partially supported by NSF grant CCF-0431027.

‖Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02139, USA, dankane@math.
harvard.edu.

∗∗Mâıtre de recherches du F.R.S.-FNRS, Université Libre de Bruxelles, Département d’informatique, ULB CP212,
Belgium. Stefan.Langerman@ulb.ac.be.

††Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA, eynat.rafalin@alumni.tufts.edu

1

{tabbott,edemaine,mdemaine,minilek,vshyeung}@mit.edu
burr@cims.nyu.edu
tmchan@uwaterloo.ca
{jhugg,kseyboth}@cs.tufts.edu
dankane@math.harvard.edu
dankane@math.harvard.edu
Stefan.Langerman@ulb.ac.be
eynat.rafalin@alumni.tufts.edu

(a) Ham-sandwich cut of two point sets. (b) Two-line partition of a point set.

Figure 1: Examples of the geometric structures we wish to maintain dynamically.

and S2 are regions, the measure µ could be area, perimeter, or the number of vertices (if S1 and
S2 are polygonal).

A related problem, introduced by Megiddo [Meg85], is that of finding a two-line partition. A
two-line partition of a subset S of the plane is a pair of lines that partition the plane into four
regions (“quadrants”) each containing a quarter of the total measure, 1

4µ(S). Figure 1(b) shows
an example for a discrete point set. As detailed in Section 2, the (static) problems of finding a
ham-sandwich cut or two-line partition for given sets S1 and S2 are well studied, with linear-time
solutions for most variations. One connection between this problem and ham-sandwich cuts is that
each line in the partition is a ham-sandwich cut with respect to the 2-coloring induced by the other
line in the partition.

While the problems of finding ham-sandwich cuts and two-line partitions are all well-understood
when the subsets of the plane are given and static, nothing nontrivial is known for the problems
of maintaining these structures for dynamically changing subsets of the plane. We initiate this
study by giving the first sublinear data structures for maintaining ham-sandwich cuts and two-line
partitions of dynamic point sets in the plane. We give two main data structures for this problem:
the first considers arbitrary point sets, while the second optimizes for when the point set can be
decomposed into a small number of subsets in convex position, in addition to bisecting area and
perimeter of convex polygons.

Arbitrary point sets. Our arbitrary-point-set data structure maintains two planar point sets P1

and P2, of total size n, subject to the following two updates and two queries:

• Insert(p, i): Insert point p into Pi.

• Delete(p, i): Delete point p from Pi.

• Ham-sandwich cut: Find a ham-sandwich cut of P1 and P2.

2

��

Figure 2: A ham-sandwich cut of several convex polygons of two colors. Darker shading indicates
overlap between polygons.

• Two-line partition: Find a two-line partition of P1 ∪ P2.

The data structure provides the following update-query trade-off: for any desired U(n) with 1 ≤
U(n) ≤ n, the data structure supports updates in O∗(U(n)) worst-case time and supports queries
in O∗(

√
n/U(n)) amortized time, using O∗(n U(n)) space. In particular, if we set the query and

update bounds to be equal, we obtain O∗(n1/3) time per operation using O∗(n4/3) space.
This data structure is simple in its idea but involves some sophisticated techniques. Specifically,

it uses a range-counting data structure of Matoušek [Mat92a] and two levels of parametric search.
The generality of this data structure is unmatched by our second data structure, which is tuned
for special “decomposable” families of point sets (see Figure 2).

Convex pieces. Our convex-pieces data structure maintains k planar point sets P1, P2, . . . , Pk,
each in convex position, and of total size n, subject to the following four updates and two queries:

• Insert(p, i): Insert point p into Pi, provided this insertion maintains the invariant that Pi is
in convex position.

• Delete(p, i): Delete point p from Pi.

• Split(i, j, `): Split Pi into two sets Pi and Pj according to sideness with respect to line `,
overwriting any previous contents of Pi and Pj .

• Join(i, j): Join two linearly separable sets Pi and Pj , i 6= j, into one set Pi, provided this
join maintains the invariant that Pi is in convex position, and empty Pj .

• Ham-sandwich cut(b1, b2, . . . , bk, µ): Find a ham-sandwich cut of
⋃
{Pi | bi = 1} and

⋃
{Pi |

bi = 2} with respect to measure µ. (In other words, bi ∈ {1, 2} specifies the color of point
set Pi.) The measure µ can specify vertex count, perimeter, or area; the latter two measures
treat each Pi as a convex polygon.

3

• Two-line partition(µ): Find a two-line partition of P1∪P2∪· · ·∪Pk with respect to measure µ
(with the same options as Ham-sandwich cut).

The data structure supports updates in O(log n) worst-case time, and supports queries in O(k log4 n)
worst-case time, using O(n) space. When using the perimeter or area measure, the queries addi-
tionally require finding the roots of a polynomial of degree O(k), which can be approximated up
to b bits of precision in O(kb polylog(kb)) additional time [Pan02, Pan97].1 If desired, the user
can also add or remove an empty point set, incrementing or decrementing the value of k; the time
bounds depend on the current value of k. In addition, the user can specify a different measure µi

for each set Pi, at no additional cost. A natural special case handled by this structure is when
there is one convex point set (or equivalently, one convex polygon) of each color, so k = 2.

Another case of interest is when P1, P2, . . . , Pk form nested convex point sets. In this case, we
obtain the convex-hull peeling layers or onion peeling [Bar76, Edd82] of the points P1 ∪P2 ∪ · · ·Pk.
The convex-pieces data structure can be adapted to handle this case specifically, implementing the
interface of the arbitrary-point-set data structure and automatically dividing points into convex
layers P1, P2, . . . , Pk, using O(k log n) worst-case time per insertion or deletion. (This version of the
data structure does not support split or join.) In this way, the data structure supports arbitrary
sets of points, but the running time is fast only when k—the number of convex-hull peeling layers
or peeling depth—is small. In the worst case, k can be Θ(n), but in many cases it may be smaller.
For example, if the points are drawn uniformly at random from a disk, then E[k] = Θ(n2/3) [Dal04].
In this case, the convex-layers data structure is sublinear, albeit slower than the arbitrary-point-set
data structure, but using less space.

More generally, the data structure can support the variation of the convex-layers interface
in which P1, P2, . . . , Pk′ are not constrained to be in convex position. Rather, each Pi can be
maintained automatically according to its ci convex-hull peeling layers. The same time bounds
can then be obtained in terms of the total number k of convex sets, i.e., k =

∑k′

i=1 ci, which is at
most k′ times the maximum peeling depth of any set. In this way, we remove the restrictions on
convexity, but the performance degrades depending on how far the user deviates from convexity.

The convex-pieces data structure is simpler than the arbitrary-point-set data structure, using
basic techniques such as balanced search trees and only one application of parametric search. In
the simplest form, there are only two changes to the arbitrary-point-set data structure: (1) a
different, simpler range-counting data structure, which additionally supports perimeter and area,
and (2) additional support for updates that support convex peeling layers. In addition, we show
how to avoid one use of parametric search in this case, using an accelerated simultaneous binary
search.

2 Background

Early history. The earliest known reference about the existence of ham-sandwich cuts is by
Steinhaus and others [S+38], a Polish paper only recently translated to English [BZ04]. The paper
credits Hugo Steinhaus for posing the ham-sandwich problem and credits Stefan Banach for first
solving the problem via a reduction to the Borsuk-Ulam theorem (included in the paper). The
version it considers is for three-dimensional solids, posed informally as “Can we place a piece of
ham under a meat cutter so that meat, bone, and fat are cut in halves?” Stone and Tukey [ST42]

1The polynomial root approximation bounds measure the bit complexity of the computation; all other stated
bounds are in the real RAM model of computation.

4

later generalized the result to arbitrary measure spaces. In computational geometry, the discrete
case of a set of points is best known; see, e.g., [Ede87].

Existence proof. We give a short proof of the existence of ham-sandwich cuts in two dimensions,
as our data structures follow the same basic principle.

First we show that any smooth bounded measure µ has a bisector line of any specified slope m.
If we take a line of slope m very far down, then all of the measure µ will be above the line;
symmetrically, if we take a line of slope m very high up, then all of the measure µ will be below the
line. As we move the line continuously in between, keeping the slope fixed, the measure changes
continuously. By the intermediate value theorem, some line in between bisects the measure µ
exactly.

Second we prove that any two smooth bounded measures µ1 and µ2 have a simultaneous bisector
line. Consider the bisector of µ1 of a specified but varying slope m. If we take the slope m very near
+∞, then “above” the line essentially means to the left of the line; while if we take the slope m
very near −∞, then “above” the line essentially means to the right of the line. Therefore, whatever
α fraction of µ2 is above the µ1 bisector in the first case, a 1 − α fraction of µ2 will be above the
µ1 bisector in the second case. Varying the slope m between −∞ and +∞, the µ1 bisector moves
continuously. Again by the intermediate value theorem, some µ1 bisector must also bisect µ2 as
desired.

Point sets. The same arguments apply to point sets in general position, because in this case the
measures change by only ±1 at once, so the intermediate value theorem still applies. To handle
general point sets, we need to define the notion of bisection more carefully. Specifically, if `+ and
`− denote the closed halfplanes on either side of a line `, then ` is a bisector of measure µ if
|µ(`+) − µ(`−)| ≤ µ(`). Bose and Langerman [BL04] use this definition and show that it handles
weighted points, even with negative weights. For positive weights, the definition is equivalent to
a simpler statement: if `+ and `− denote the open halfplanes on either side of a line `, then ` is
a bisector of measure µ if µ(`+) ≤ 1

2µ(S) and µ(`−) ≤ 1
2µ(S). This definition extends easily to

two-line partitions as well.

Algorithms. Many algorithms are known for computing ham-sandwich cuts. Lo et al. [LMS94]
give an optimal O(n)-time algorithm for finding a ham-sandwich cut of two point sets of total
size n. Bose and Langerman [BL04] give an O(n log n)-time algorithm when the points have weights
(positive or negative). Bose et al. [BDH+04] give an O(n log k)-time algorithm for the case in which
the n points and (geodesic) cut are confined within a simple polygon with at most n vertices and
k reflex vertices. Stojmenović [Sto91] gives an O(n)-time algorithm for finding a ham-sandwich
cut that bisects the area of two convex polygons with n vertices total. Dı́az and O’Rourke [DO90]
give an O(nbinbout log n)-time algorithm for the more general case of two simple polygons, where
bin and bout denote the desired bit complexity of the input and output, respectively. None of these
solutions support sublinear updates as the inputs change.

Two-line partition. Using the existence of ham-sandwich cuts, it is easy to see the existence of a
two-line partition of a measure µ [Meg85]. We first bisect the measure µ, and then we find the ham-
sandwich cut of the measures on either side of this bisector. The bisector and the ham-sandwich cut
serve as a two-line partition. This approach can be used to convert any algorithm for computing
ham-sandwich cuts into an algorithm for two-line partitions. However, this transformation does

5

not necessarily apply to data structures, because they may have restrictions on how quickly points
can be recolored as red or blue.

3 Arbitrary-Point-Set Data Structure

This section presents a solution to the dynamic ham-sandwich cut problem for two general point
sets P1 and P2 in the plane.

3.1 Data Structure

The data structure we maintain is (a variation of) a known data structure for simplex range
counting, Matoušek’s partition trees [Mat92a]. In two dimensions, and for any parameter s between
n and n2, we can construct a partition-tree data structure using O∗(s) space and preprocessing that
allows us to count the number of points of P1 (or P2) inside any given triangle (and in particular
any given halfplane) in O∗(n/

√
s) time.

In addition to this basic result, we need two additional features that follow from simple modi-
fications. Similar observations have been made by Agarwal and Matoušek [AM93] as well.

First, the partition-tree data structure can be made dynamic, to support insertions and deletions
of points in P1 (or P2) in O∗(s/n) amortized time per operation. Although dynamization is explicitly
stated only in one case (when s = n) in Matoušek’s paper [Mat92a], Agarwal and Matoušek [AM95]
provide a complete dynamization of another data structure of Matoušek [Mat92b] for halfspace
range reporting, and the same techniques carry over to simplex range searching. (In fact, the
dynamization is slightly simpler for simplex range searching, because “shallowness” [Mat92b] does
not come into play.)

Second, the query algorithm of partition trees can be parallelized efficiently to run in O(log n)
time with O∗(n/

√
s) processors. This parallelization is straightforward, by descending from each

level to the next level of the partition tree in parallel. This parallel bound will be essential in our
subsequent applications of parametric search.

3.2 Bisector Query

As a first step toward computing a ham-sandwich cut, we consider how to find a bisector of one of
the point sets with a specified slope.

Our algorithm uses Megiddo’s parametric search technique [Meg83]. For an unknown real
value x∗, this technique transforms a parallel algorithm (in the algebraic decision tree model) for
deciding whether x∗ is at most a given threshold x into a sequential algorithm for computing x∗.
If the parallel decision algorithm runs in TP time on P processors, whose total work is T1, then the
running time of the resulting algorithm is O((P + T1 log P)TP), for any desired value P . Further-
more, for a restricted class of parallel algorithms satisfying a certain “bounded fan-out” property,
a refined technique by Cole [Col87] improves the running time to O((P + T1)TP + T1 log P).

In addition, because our bisection algorithm will be used in another level of parametric search,
we need to develop a parallel bisection algorithm. Megiddo [Meg83] describes a parallel version of
parametric search for precisely such “second-order” applications. Specifically, the resulting algo-
rithm runs in O(T 2

P log P) time on P processors.

Proposition 1 Given a slope m, we can find a bisector of P1 (or P2) of slope m in O∗(n/
√

s)
sequential time or in O(log3 n) parallel time with O∗(n/

√
s) processors.

6

Proof: Let b∗ denote the unknown y intercept of the bisector of slope m. First we solve the decision
problem: given a value b, test whether b∗ ≤ b. To this end, we count the number of points of P1

below the line with slope m and intercept b. This count corresponds to a halfplane range-counting
query and thus partition trees can answer it in T1 = O∗(n/

√
s) sequential time or TP = O(log n)

parallel time with P = O∗(n/
√

s) processors. The answer to the decision problem is “yes” (b∗ ≤ b)
precisely if the count is at least |P1|/2.

Now we apply parametric search to compute b∗. In the sequential version, we obtain a run-
ning time of O([P + T1 log P]TP) = O∗([n/

√
s + (n/

√
s) log(n/

√
s)] log n) = O∗(n log2 n/

√
s) =

O∗(n/
√

s). (Cole’s refined technique applies here but the logarithmic improvement would disap-
pear in the O∗ notation.) In the parallel version, we obtain a running time of O(T 2

P log P) =
O(log2 n log(n/

√
s)) = O(log3 n) on P processors. 2

3.3 Ham-Sandwich Cut

Now we are ready to describe the algorithm for finding a ham-sandwich cut. This algorithm uses a
second level of parametric search, building on top of the bisector algorithm. However, because the
solution is not necessarily unique, the application of parametric search is a little less conventional,
so we provide more details about the parametric search.

Theorem 1 There is a data structure that maintains two point sets of total size n subject to in-
sertion and deletion of points in O∗(s/n) amortized time and subject to queries for a ham-sandwich
cut in O∗(n/

√
s) time using O∗(s) space.

Proof: Let m∗ denote the unknown slope of some ham-sandwich cut. We maintain an interval
[ma,mb], satisfying the invariant that the slope-ma bisector of P1 is above the slope-ma bisector
of P2 but the slope-mb bisector of P1 is below the slope-mb bisector of P2, or vice versa. By a
continuity argument (as in Section 2), we know that there is a solution with a slope in the interval
[ma,mb]. Initially we set [ma,mb] = [−∞,∞].

We simulate the parallel algorithm from Proposition 1 with TP parallel steps and P processors,
on an unknown slope m∗, first for the point set P1 and then for P2. In each parallel step, we
need to resolve comparisons of m∗ with O(P) values (roots of fixed-degree polynomials). These
comparisons can be resolved by performing a binary search over these values (using median finding).
In this binary search, when comparing m∗ with a value m, we call the sequential algorithm from
Proposition 1 with running time T1 to determine the slope-µ bisectors of P1 and P2. We know
that at least one of the two subintervals [µa, µ] and [µ, µb] still satisfies the invariant, and we
modify [µa, µb] to be this subinterval. In the former case, we report that µ∗ < µ; in the latter
case, we report that µ∗ > µ. The binary search requires O(log P) actual comparisons. Thus,
all comparisons in each parallel step can be resolved in O(P + T1 log P) time. The total time is
therefore O((P + T1 log P)TP). In our case, T1 = P = O∗(n/

√
s) and TP = O(log3 n), yielding the

final time bound of O∗(n/
√

s).
At the end of the simulation for both point sets P1 and P2, we have identified a point p1 ∈ P1

and a point p2 ∈ P2 that define the slope-µ bisectors of P1 and P2, respectively, for all m inside the
final interval [µa, µb]. Because a solution exists for some slope inside this interval, we know that
some ham-sandwich cut must be defined by both p1 and p2, so we are done. 2

A similar parametric search appears in an algorithm for ham-sandwich cuts by Cole, Sharir,
and Yap [CSY87].

7

3.4 Two-Line Partition

Because this data structure supports only the point-counting measure µ, it is relatively straightfor-
ward to extend the data structure for ham-sandwich cuts to a data structure for two-line partitions
of a point set P . Specifically, we maintain the invariant that one of the cuts is a vertical line at the
median x coordinate among points in P , and that the points in P are partitioned into P1 and P2

according to whether they are left or right of this vertical line. This invariant is easy to maintain:
each insertion or deletion on P translates into a constant number of insertions and deletions on
P1 and P2. Now a second bisector can be obtained simply by computing a ham-sandwich cut with
respect to P1 and P2, which we have shown how to do. Therefore, in the same time and space
bounds, we can maintain two-line partitions of a dynamic point set P .

4 Convex-Pieces Data Structure

The convex-pieces data structure represents each convex polygon Pi by two augmented balanced
binary search trees on the polygon edges, one for the upper chain and one for the lower chain, each
ordering the edges in counterclockwise order. (In this section, we use the notation Pi to denote
both a point set and the induced convex polygon.) The upper and lower chains are defined by their
common endpoints of minimum and maximum x coordinate. We use a balanced binary search tree
that supports insertion, deletion, search, split, and concatenate in O(log n) time per operation,
such as red-black trees [CLRS01, ch. 13], and for simplicity we view the data as being stored in the
leaves.

With each edge (p, q) of a convex polygon Pi, we store three measures: (1) the signed area of
the trapezoid defined by p, q, and the projections of p and q onto the x axis; (2) the length of the
line segment from p to q; and (3) the number 1. In (1), signed area measures the area of the portion
of the trapezoid above the x axis minus the area of the portion below the x axis, for edges on the
upper hull, and the negation of this difference for edges on the lower hull (i.e., edges pointing right),
following [IL00, CCAU98]. Each node x of a binary search tree, which represents a subchain of Pi

corresponding to the descendant leaves, maintains three subtree sums, one for each measure. From
this information we can compute the measure of any subchain of a convex polygon Pi, in O(log n)
time, by adding the sums from the corresponding O(log n) subtrees.

4.1 Updates

First we describe how to maintain this data structure subject to insertions, deletions, splits, and
joins according to the second interface described in Section 1, where the user specifies which convex
set Pi should be updated. All operations can be supported in O(log n) worst-case time.

The simplest operation to implement is Delete(p, i): we delete the point p from the one or two
trees containing it, in O(log n) time. Two trees contain p if p happens to be an endpoint of the
upper and lower chains; in this case, we must also add the new extreme point (either leftmost or
rightmost) to the other chain. These changes require updating the measures of O(1) edges, and the
subtree sums can be propagated in O(log n) time. During rebalancing, we can maintain subtree
sums by adding O(1) time to the cost of a rotation; thus this information can be maintained with
a constant-factor overhead.

Next consider inserting a new point p in a convex polygon Pi, with the property that the
resulting vertex set Pi ∪ {p} remains in convex position. With a sidedness test between p and
the line connecting the two endpoints of the upper and lower chains, we can determine whether p
should be added to the upper or lower chain. Then we simply insert p into the binary search tree

8

r

q

s

Figure 3: Insertion and deletion of point q and its affect on the convex-hull peeling-layers. The
layers with point q are drawn as solids lines while the layers without q are drawn as dashed lines.
Point q has depth 2, and its insertion or deletion affects only layers of depth ≥ 2.

representing that chain, preserving the sorted order of the points by x coordinates. If p turns out
to be a new extreme (minimum or maximum) x coordinate, then we insert p as a new endpoint
into the other chain as well, and remove the old endpoint from the chain that we first inserted p
into.

Join(i, j) can be viewed as a generalization of Insert: instead of adding one point to a convex
polygon Pi, we now add an entire convex chain Pj to the polygon Pi. To find the edge in Pi to
be deleted, we find where any point of Pj would be inserted, as above; similarly, we also find the
edge in Pj that would be deleted if any point of Pi would be inserted. Now we are left with two
open chains which can be glued into one closed convex polygon, using the O(log n)-time split and
concatenate operations provided by the binary search trees representing the upper and lower chains.

The inverse operation Split(i, j, `) is similar. In O(log n) time, we can find the two edges of the
convex polygon Pi intersected by the line ` [O’R98]. Then we can partition the upper and lower
chains appropriately using the O(log n) split and concatenate operations provided by the binary
search trees.

4.2 Convex-Hull Peeling Layers

Next we describe how to extend our data structure to allow each point set Pi to be in noncon-
vex position, by automatically maintaining a decomposition of Pi into convex-hull peeling layers.
Specifically, we let Pi,1, Pi,2, . . . , Pi,ci denote the convex peeling layers of Pi, where Pi,1 is outer-
most. The update operations Insert and Delete refer to the overall set Pi, and the data structure
automatically maintains the convex peeling layers. The running time of the operations will increase
somewhat, to O(k log n) worst-case time per operation where k =

∑k′

i=1 ci is the total number of
convex layers. The key property we use is that, when inserting or deleting points, the convex-hull
peeling layers change by moving entire intervals between adjacent layers; see Figure 3. Both inser-
tions and deletions affect the layer containing the input point and possibly all more deeply nested
layers, but affect none of the shallower layers.

To insert a point p into Pi, we first find the two adjacent layers Pi,j−1 and Pi,j such that p is
interior to the polygon Pi,j−1 but not interior to the polygon Pi,j . These layers are easy to find
in O(log ci log n) time by binary searching on j, and at each step j of the binary search, spending
O(log n) time to decide whether p is interior to Pi,j . Now we enter a general recursion in which we
wish to insert a convex chain of points p1, p2, . . . , pr (initially, consisting of just a single point p)
into layer Pi,j . We also have as an invariant of the recursion that this convex chain either consists
of a single point or it used to belong to the next outer layer Pi,j−1. Thus we know that the chain’s
tangents extending edges p1p2 and pr−1pr do not intersect Pi,j . Hence the two bridges (common
tangents) between the to-be-inserted convex chain and Pi,j pass through p1 and pr, respectively.

9

We can find each of these bridges in O(log n) using a binary search, at each stage performing a
sidedness test between the chain endpoint and the line extending an edge of Pi,j . If we find that
these tangents to Pi,j actually intersect the to-be-inserted chain p1, p2, . . . , pr (in addition to passing
through p1 or pr), then the convex polygon p1, p2, . . . , pr actually contains Pi,j . In this case, we
define this polygon as a new layer P ′

i,j and increment the layer number j of all layers nested within,
including the old Pi,j . Otherwise, we have actual bridges and, using the O(log n)-time split and
concatenate operations, we can cut out the portion of Pi,j strictly between the two bridge endpoints
of Pi,j , and splice in the to-be-inserted chain p1, p2, . . . , pr (itself represented by a balanced binary
search tree). Then, if the cut-out chain has at least one point, we recursively insert it into the
next layer, Pi,j+1. In the base case, the layer Pi,j+1 is empty, in which case we trivially add the
convex chain to the layer. The total time spent by the recursion to update Pi,j , Pi,j+1, . . . , Pi,ci is
O(ci log n).

Deleting a point p from Pi reduces to insertion. We find the layer Pi,j to which p belongs in
O(log ci log n) time. Then we delete p and its incident edges from this layer, leaving an open chain,
and insert this chain into the next deeper layer Pi,j+1 as above. Finally, we renumber the layer
numbers to use Pi,j .

This concludes the description of how to maintain convex-hull peeling layers. This maintenance
affects updates but not queries. For the purposes of uniformly describing the queries, we assume
henceforth that the Pi’s are convex sets; in the convex-hull-peeling data structure, this notation in
fact refers to the Pi,j layers.

4.3 Basic Queries

In preparation for ham-sandwich cuts, we describe two basic queries that form necessary subrou-
tines: range counting (or more accurately, range measurement) and bisection.

Proposition 2 Given an oriented line `, a desired subset P of {P1, P2, . . . , Pk}, and a measure µ
of vertex count, perimeter, or area, we can compute the measure of the portion of

⋃
P left of ` in

O(k log n) sequential time or O(log n) parallel time on k processors.

Proof: We can consider each convex polygon Pi ∈ P separately and add up the computed measures.
In O(log n) time, we can find the two edges e1, e2 of the convex polygon Pi intersected by the line `
[O’R98], as well as the points of intersection. Here we label e1 and e2 in the order they are
intersected by the oriented line `. Then we compute the sum of the measures of the interval of
edges clockwise from e1 to e2, including both e1 and e2, in O(log n) using the appropriate subtree
sums in the binary search tree. For vertex count, we subtract 1 from this sum to count the number
of vertices strictly between e1 and e2. For perimeter, we subtract off the length of the portions
of e1 and e2 on the right of oriented line `. For area, we follow the ideas of [IL00, CCAU98]. We
subtract off the area of the trapezoid defined by the two points of intersection between ` and Pi

and their two projections onto the x axis. We also subtract off the area under e1 and e2 right of `.
The result is the desired area of the portion of Pi left of `.

In all cases, we spend O(log n) time per convex polygon Pi, for a total of O(k log n) time.
With k processors, we can process each convex polygon in parallel, and then sum the answers in
O(log k) = O(log n) time. 2

Langerman [Lan03] proves that, in the worst case, any data structure, even static, supporting
range measurement queries as in Proposition 2 requires Ω(k) time per query in the case of perimeter

10

and area measures. While this lower bound does not extend to the problems of bisection and ham-
sandwich cuts, it limits the running times we can expect from any data structure based on range
measurement as a foundation.

Proposition 3 Given a slope m, a desired subset P of {P1, P2, . . . , Pk}, and a measure µ of vertex
count, perimeter, or area, we can find the edges of each Pi ∈ P intersected by a bisector of

⋃
P of

slope m in O(k log2 n) sequential time or O(log2 n) parallel time on k processors.

Proof: The algorithm is a global binary search over all vertices of polygons Pi in P, with a total
of O(log n) rounds. In general, we suppose we have a range [b1, b2] of (y) intercepts, such that there
is a bisector of slope m with intercept in the range. Initially, [b1, b2] = [−∞,+∞].

The main challenge in a step of the binary search is to find a good “candidate intercept” b
in the range [b1, b2]. Let R denote the strip of lines of slope m and with intercept in the range
[b1, b2]. For each convex polygon Pi, we compute a median point qi in Pi ∩ R with respect to the
intercept, i.e., a point qi such that the line of slope m passing through qi roughly bisects the points
of Pi contained in the strip R. Such a median point can be computed in O(log n) time using an
algorithm for computing the median of the union of two sorted arrays [CLRS01, Ex. 9.3-8, p. 193];
here, the two arrays correspond to subchains of the upper and lower chains of Pi. We also define
the weight wi of the median point qi to be the number of points in Pi ∩ R, which again can be
computed in O(log n) time. Now we compute a weighted median qj of q1, q2, . . . , qk, i.e., a point qj

such that the total weight of points qi with intercept smaller than qj ’s intercept, and similarly the
total weight of points qi with intercept larger than qj ’s intercept, are both at most half the total
weight. Such a weighted median can be computed in O(k) time [CLRS01, Prob. 9-2, p. 194], but
for our purposes it suffices to just sort the qj ’s by intercept and scan the array until at most half
the weight is on either side, using O(k log k) time.

Now we apply Proposition 2 to compute the measure of
⋃
P left of the line with slope m and

intercept b, using O(k log n) time. If the measure happens to be half of the total measure µ(
⋃
P)

(which we can compute once at the beginning), then we have the desired bisector. Otherwise, the
measure left of the line is either larger or smaller than half the total measure. If it is larger, we
can narrow our intercept interval to [b, b2]; if it is smaller, we can narrow our intercept interval to
[b1, b]. In either case, we eliminate roughly half of the points from the polygons Pi whose median
point qi has intercept either smaller or larger than qj , including Pj and qj itself. Together, these
qi’s constitute at least half of the weight, so we eliminate at least roughly a quarter of the points
from

⋃
S ∩R. Therefore, the total running time of the binary search is O(k log2 n).

Using k processors, we can compute the median point qi and its weight wi for each polygon
Pi in parallel. We can compute the weighted median in O(log k) time by sorting by intercept,
computing prefix sums on the weights, and then binary searching for the weighted median. This
cost is dominated by the O(log n) cost to compute each qi. Thus the total parallel running time is
O(log2 n). 2

Our sequential algorithm in Proposition 3 is similar to an algorithm for selection among multiple
sorted arrays [FJ82], except that we pay an extra logarithmic factor for using trees instead of arrays.
We believe that this logarithmic overhead can be removed using weight-balanced trees and a careful
implementation of [FJ82], but have not verified the details. A somewhat weaker result could also
be obtained simply by applying parametric search, as with Proposition 1. The time bounds would
then be a factor of O(log k) worse: O(k log k log2 n) sequential and O(log k log2 n) parallel on k
processors.

11

4.4 Ham-Sandwich Cut

Now we turn to one of the main queries of interest, ham-sandwich cuts.

Theorem 2 There is a data structure that maintains k convex point sets with n points total sub-
ject to insertion and deletion of vertices in O(log n) worst-case time and subject to queries for a
ham-sandwich cut in O(k log4 n) worst-case time plus, in the case of area or perimeter measures,
O((kb) log(kb)) time to approximate the roots of a polynomial of degree O(k) up to b bits of precision.

Proof: We use parametric search as in Theorem 1, using the bisector subroutine from Proposition 3.
Thus, T1 = O(k log2 n), TP = O(log2 n), and P = k. Therefore, the running time is O((P +
T1 log P)TP) = O((k + k log2 n log k) log2 n) = O(k log k log4 n). Cole’s refined technique [Col87]
applies here because our parallel algorithm satisfies the bounded fan-out property: each comparison
influences only a constant number of comparisons at the next parallel step. With this technique,
the running time improves to O((P + T1)TP + T1 log P) = O((k + k log2 n) log2 n + k log2 n log k) =
O(k log4 n).

For the area and perimeter measures, we need some additional care. Proposition 3 determines
the edges of the polygons intersected by the bisector of a given slope. Langerman [Lan03] shows
that the perimeter or area of the k polygons on one side of the bisecting line can be written as
a ratio of two polynomials, where the numerator is of degree 2 in the intercept and degree O(k)
in the slope, and where the denominator depends only on the slope and is of degree O(k). Thus,
during the parametric search, given the current guess of the slope, we can compute the intercept
using the quadratic formula. At the end of the algorithm, though, we need to solve for the slope as
well, which requires solving two polynomials of degree O(k), which is equivalent to one polynomial
of degree O(k). Here we use polynomial root-finding algorithms [Pan02, Pan97] which compute b
bits of precision in O((kb) log(kb)) time, measured as bit computations. 2

4.5 Two-Line Partition

Recall that the two-line partition of a set S is a pair of lines dividing the plane into quadrants
each containing equal measure 1

4µ(S). In the convex-layers data structure, S is defined to be
P1 ∪P2 ∪ · · ·Pk. We show that the same ham-sandwich data structure can be used to find two-line
partitions as well, in O(k log4 n) time.

To find a two-line partition of S, we first find an arbitrary bisecting line ` of S, in O(k log2 n)
time by Proposition 3. This line ` defines a 2-coloring of the points in S. We form this 2-coloring by
splitting each set Pi according to the line `—Split(i, k+i, `) for each i—which costs O(k log n) time.2

Then we make a ham-sandwich query with the 2-coloring b1, b2, . . . , b2k = 1, 1, . . . , 1︸ ︷︷ ︸
k

, 2, 2, . . . , 2︸ ︷︷ ︸
k

defined by the side of the split, which costs O(k log4 n) time. The ham-sandwich cut, together with
the line `, define a two-line partition. We can restore the original sets either by calling Join(i, k+ i)
for each i, or by undoing the (logged) changes made by the split. The total time required is
O(k log4 n), dominated by the ham-sandwich cut.

2We can perform the split even in the case of convex-peeling layers, simply by cutting each layer individually; we
do not need to compute the ramifications of the splits on the convex peeling because we will later undo the changes.

12

5 Conclusion

Our results give one of the first dynamic data structures for maintaining ham-sandwich cuts in
sublinear time per update. Ham-sandwich cuts can be generalized in many directions, as described
in Section 2, and it would be interesting to consider dynamic data structures for these generaliza-
tions. Can we support weighted points, or bisecting the area of nonconvex polygons, or geodesic
cuts within a polygon? What about point sets in higher (fixed) dimensions?

Acknowledgments

This work began at an open-problem session organized as part of the MIT Advanced Data Structures
class (6.897) in Spring 2005. The authors thank the other participants of that session—Brian
Dean, Nick Harvey, Pramook Khungurn, Michael Lieberman, Mihai Pǎtraşcu, and Yoyo Zhou—
for helpful discussions and a stimulating environment. We also thank the anonymous referees for
helpful comments.

References

[ADD+05] Timothy Abbott, Erik D. Demaine, Martin L. Demaine, Daniel Kane, Stefan Langer-
man, Jelani Nelson, and Vincent Yeung. Dynamic ham-sandwich cuts of convex poly-
gons in the plane. In Proceedings of the 17th Canadian Conference on Computational
Geometry, pages 61–64, Windsor, Canada, August 2005.

[AM93] Pankaj K. Agarwal and Jǐŕı Matoušek. Ray shooting and parametric search. SIAM
Journal on Computing, 22(4):794–806, 1993.

[AM95] P. K. Agarwal and J. Matoušek. Dynamic half-space range reporting and its applica-
tions. Algorithmica, 13(4):325–345, 1995.

[Bar76] V. Barnett. The ordering of multivariate data. Journal of the Royal Statistical Society,
Series A, 139(3):318–355, 1976. With a discussion by R. L. Plackett, K. V. Mardia,
R. M. Loynes, A. Huitson, G. M. Paddle, T. Lewis, G. A. Barnard, A. M. Walker, F.
Downton, P. J. Green, Maurice Kendall, A. Robinson, Allan Seheult, and D. H. Young.

[BDH+04] Prosenjit Bose, Erik D. Demaine, Ferran Hurtado, John Iacono, Stefan Langerman,
and Pat Morin. Geodesic ham-sandwich cuts. In Proceedings of the 20th Annual ACM
Symposium on Computational Geometry, pages 1–9, Brooklyn, New York, June 2004.

[BHR+05] Michael A. Burr, John Hugg, Eynat Rafalin, Kathryn Seyboth, and Diane L. Sou-
vaine. Dynamic ham-sandwich cuts for two point sets with bounded convex-hull-peeling
depth. Technical Report TR-2005-7, Department of Computer Science, Tufts Univer-
sity, November 2005. Presented at the 15th Annual Fall Workshop on Computational
Geometry and Visualization, Philadelphia, PA, November 2005.

[BL04] Prosenjit Bose and Stefan Langerman. Weighted ham-sandwich cuts. In Revised Papers
from the Japan Conference on Discrete and Computational Geometry, volume 3742 of
Lecture Notes in Computer Science, pages 48–53, Tokyo, Japan, October 2004.

[BZ04] W. A. Beyer and Andrew Zardecki. The early history of the ham sandwich theorem.
Amer. Math. Monthly, 111(1):58–61, 2004.

[CCAU98] J. Czyzowicz, F. Contreras-Alcalá, and J. Urrutia. On measuring areas of polygons. In
Proceedings of the 10th Canadian Conference on Computational Geometry, 1998.

13

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, second edition, 2001.

[Col87] Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. Jour-
nal of the ACM, 34(1):200–208, January 1987.

[CSY87] Richard Cole, Micha Sharir, and Chee-K. Yap. On k-hulls and related problems. SIAM
J. Comput., 16(1):61–77, 1987.

[Dal04] Ketan Dalal. Counting the onion. Random Structures & Algorithms, 24(2):155–165,
2004.

[DO90] Matthew Dı́az and Joseph O’Rourke. Ham-sandwich sectioning of polygons. In Pro-
ceedings of the 2nd Canadian Conference on Computational Geometry, pages 282–286,
1990.

[Edd82] William F. Eddy. Convex hull peeling. In H. Caussinus and P. Ettinger, editors,
COMPSTAT 1982: Proceedings in Computational Statistics, Part 1, pages 42–47, Vi-
enna, 1982. Physica-Verlag.

[Ede87] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of Mono-
graphs in Theoretical Computer Science. Springer, 1987.

[FJ82] Greg N. Frederickson and Donald B. Johnson. The complexity of selection and ranking
in X +Y and matrices with sorted columns. Journal of Computer and System Sciences,
24(2):197–208, April 1982.

[IL00] John Iacono and Stefan Langerman. Volume queries in polyhedra. In Revised Papers
from the Japan Conference on Discrete and Computational Geometry, volume 2098 of
Lecture Notes in Computer Science, pages 156–159, Tokyo, Japan, November 2000.

[Lan03] Stefan Langerman. The complexity of halfspace area queries. Discrete & Computational
Geometry, 30(4):639–648, 2003.

[LMS94] Chi-Yuan Lo, J. Matoušek, and W. Steiger. Algorithms for ham-sandwich cuts. Discrete
Comput. Geom., 11(4):433–452, 1994.

[Mat92a] Jǐŕı Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–
334, 1992.

[Mat92b] Jǐŕı Matoušek. Reporting points in halfspaces. Computational Geometry: Theory and
Applications, 2(3):169–186, 1992.

[Meg83] Nimrod Megiddo. Applying parallel computation algorithms in the design of serial
algorithms. Journal of the Association for Computing Machinery, 30(4):852–865, 1983.

[Meg85] Nimrod Megiddo. Partitioning with two lines in the plane. J. Algorithms, 6(3):430–433,
1985.

[O’R98] Joseph O’Rourke. Stabbing a convex polygon (section 7.9.1). In Computational Geom-
etry in C, pages 271–272. Cambridge University Press, second edition, 1998.

[Pan97] Victor Y. Pan. Solving a polynomial equation: some history and recent progress. SIAM
Review, 39(2):187–220, 1997.

[Pan02] Victor Y. Pan. Univariate polynomials: nearly optimal algorithms for numerical fac-
torization and root-finding. Journal of Symbolic Computation, 33(5):701–733, 2002.
Computer algebra (London, ON, 2001).

[S+38] Hugo Steinhaus et al. A note on the ham sandwich theorem. Mathesis Polska, 9:26–28,
1938.

14

[ST42] A. H. Stone and J. W. Tukey. Generalized “sandwich” theorems. Duke Mathematical
Journal, 9:356–359, 1942.

[Sto91] Ivan Stojmenović. Bisections and ham-sandwich cuts of convex polygons and polyhedra.
Information Processing Letters, 38(1):15–21, 1991.

15

	1 Introduction
	2 Background
	3 Arbitrary-Point-Set Data Structure
	3.1 Data Structure
	3.2 Bisector Query
	3.3 Ham-Sandwich Cut
	3.4 Two-Line Partition

	4 Convex-Pieces Data Structure
	4.1 Updates
	4.2 Convex-Hull Peeling Layers
	4.3 Basic Queries
	4.4 Ham-Sandwich Cut
	4.5 Two-Line Partition

	5 Conclusion

