
CS 221: Computational Complexity Prof. Salil Vadhan

Problem Set 0

Assigned: Tue. Jan. 27, 2014 Due: Fri. Feb. 7, 2014 (5 PM sharp)

• You must type your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use LATEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS0-yourlastname.*.

• Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Any students who have not completed CS121 or equivalent with a grade of B+ or higher are
required to complete this problem set (on time, with no late days). Other students are encouraged
to solve the problems for review and submit solutions for feedback.

Problem 1. (NP-completeness) In the Bounded Halting problem, we are given a pair
(M, 1t) where M is a Turing machine and t is an integer and have to decide whether there exists
an input (of length at most t) on which M halts within t steps.

Show that Bounded Halting is NP-complete.

Problem 2. (coNP) Let coNP = {L : L̄ ∈ NP}, the class of languages whose complement is
in NP.

1. Show that a language L is complete for NP iff L̄ is complete for coNP. (Here completeness
is with respect to poly-time mapping reductions, aka Karp reductions.)

2. Show that if NP 6= coNP, then P 6= NP.

3. Let Tautology={φ: φ a boolean formula s.t. ∀a, φ(a) = 1}. Show that Tautology is
coNP-complete.

Problem 3. (Why Languages?)

1. Given a function f : Σ∗ → Σ∗ such that |f(x)| ≤ poly(|x|) for all x, show that there is a
language L such that f can be computed in poly-time given a black box (i.e. an “oracle”)
for deciding L, and L can be decided in poly-time given a black box (i.e. an “oracle”) for
commputing f . That is, f and L are equivalent under Cook reductions.

1

2. A search problem is a mapping S from strings (”instances”) to sets of strings (”valid solu-
tions”). An algorithm M solves a search problem S if for every input x such that S(x) 6= ∅,
M(x) outputs some solution in S(x). An NP search problem is a search problem S such that
there exists a polynomial p and a polynomial-time algorithm V such that for every x, y:

• y ∈ S(x)⇒ |y| ≤ p(|x|) and

• y ∈ S(x) ⇐⇒ V accepts 〈x, y〉

It is widely believed that there is no polynomial-time algorithm for integer factorization.
Under this assumption and also using the fact that Primes is in P, exhibit two NP search
problems S and T such that the corresponding languages, {x : S(x) 6= ∅} and {x : T (x) 6= ∅},
are identical yet S is solvable in polynomial time and T is not.

3. An NP optimization problem is given by a polynomial-time computable objective function
Obj : Σ∗×Σ∗ → Q≥0, where Q≥0 is the set of nonnegative rational numbers and Obj(x, y) =
+∞ if |y| > p(|x|) for some polynomial p. The problem is: given an input x, find y minimizing
Obj(x, y). An example is the problem of finding the shortest tour in an instance of the
Travelling Salesman Problem.

Prove that the following are equivalent:

• P = NP

• Every NP search problem can be solved in polynomial time.

• Every NP optimization problem can be solved in polynomial time.

2

