CS 221: Computational Complexity

Prof. Salil Vadhan

Problem Set 0

Assigned: Tue. Jan. 27, 2014 Due: Fri. Feb. 7, 2014 (5 PM sharp)

- You must *type* your solutions. LaTeX, Microsoft Word, and plain ascii are all acceptable. Submit your solutions *via email* to cs221-hw@seas.harvard.edu. If you use LaTeX, please submit both the compiled file (.pdf) and the source (.tex). Please name your files PSO-yourlastname.*.
- Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details. Do not despair if you cannot solve all the problems! Difficult problems are included to stimulate your thinking and for your enjoyment, not to overwork you. *'ed problems are extra credit.

Any students who have not completed CS121 or equivalent with a grade of B+ or higher are required to complete this problem set (on time, with no late days). Other students are encouraged to solve the problems for review and submit solutions for feedback.

Problem 1. (NP-completeness) In the BOUNDED HALTING problem, we are given a pair $(M, 1^t)$ where M is a Turing machine and t is an integer and have to decide whether there exists an input (of length at most t) on which M halts within t steps.

Show that BOUNDED HALTING is NP-complete.

Problem 2. (coNP) Let coNP = $\{L : \overline{L} \in NP\}$, the class of languages whose complement is in NP.

- 1. Show that a language L is complete for **NP** iff \bar{L} is complete for **coNP**. (Here completeness is with respect to poly-time mapping reductions, aka Karp reductions.)
- 2. Show that if $\mathbf{NP} \neq \mathbf{coNP}$, then $\mathbf{P} \neq \mathbf{NP}$.
- 3. Let TAUTOLOGY= $\{\phi: \phi \text{ a boolean formula s.t. } \forall a, \phi(a) = 1\}$. Show that TAUTOLOGY is **coNP**-complete.

Problem 3. (Why Languages?)

1. Given a function $f: \Sigma^* \to \Sigma^*$ such that $|f(x)| \leq \text{poly}(|x|)$ for all x, show that there is a language L such that f can be computed in poly-time given a black box (i.e. an "oracle") for deciding L, and L can be decided in poly-time given a black box (i.e. an "oracle") for commputing f. That is, f and L are equivalent under Cook reductions.

- 2. A search problem is a mapping S from strings ("instances") to sets of strings ("valid solutions"). An algorithm M solves a search problem S if for every input x such that $S(x) \neq \emptyset$, M(x) outputs some solution in S(x). An **NP** search problem is a search problem S such that there exists a polynomial p and a polynomial-time algorithm V such that for every x, y:
 - $y \in S(x) \Rightarrow |y| \le p(|x|)$ and
 - $y \in S(x) \iff V \text{ accepts } \langle x, y \rangle$

It is widely believed that there is no polynomial-time algorithm for integer factorization. Under this assumption and also using the fact that PRIMES is in **P**, exhibit two **NP** search problems S and T such that the corresponding languages, $\{x: S(x) \neq \emptyset\}$ and $\{x: T(x) \neq \emptyset\}$, are identical yet S is solvable in polynomial time and T is not.

3. An **NP** optimization problem is given by a polynomial-time computable objective function $\operatorname{Obj}: \Sigma^* \times \Sigma^* \to \mathbb{Q}^{\geq 0}$, where $\mathbb{Q}^{\geq 0}$ is the set of nonnegative rational numbers and $\operatorname{Obj}(x,y) = +\infty$ if |y| > p(|x|) for some polynomial p. The problem is: given an input x, find y minimizing $\operatorname{Obj}(x,y)$. An example is the problem of finding the shortest tour in an instance of the Travelling Salesman Problem.

Prove that the following are equivalent:

- P = NP
- Every **NP** search problem can be solved in polynomial time.
- Every **NP** optimization problem can be solved in polynomial time.