CS 221: Computational Complexity Prof. Salil Vadhan

Problem Set 1

Assigned: Sun. Feb. 9, 2014 Due: Fri. Feb. 21, 2014 (5 PM sharp)

e You must type your solutions. IATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use IXTEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS1-yourlastname. *.

e Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 1. (A Universal NTM) Show that there is a universal nondeterministic Turing
machine whose running time when simulating a nondeterministic TM N (encoded by a string «)
on input z, is at most ¢, - Timey (z) for some constant ¢, depending only on the encoding . (Hint:
use the “guess and verify” approach to designing efficient nondeterministic algorithms.)

Problem 2. (An Average-Case Time Hierarchy) Let f,g: N — Nbesuch that f(n)log f(n) =
o(g(n)) and g is time-constructible. Show that there is a language L € DTIME(g(n)) with the
property that for every TM M running in time f(n), there is a constant ;7 > 0 such that for all
sufficiently large n, M errs in deciding L on at least an e, fraction of inputs of length n.

Problem 3. (A Tighter Time Hierarchy Theorem) Prove that for every constant € > 0,
DTIME(nlog®n) € DTIME(n). (Hint: use translation. first try to handle the case that ¢ >

1/2.)

Problem 4. (LINEAR PROGRAMMING) A linear program consists of a collection of variables
Z1,...,%n, a linear objective function ) . ¢;z; (specified by the vector ¢ € Q™), and a collection of
constraints each of which is a linear inequality >, a;z; < b (specified by @ € Q™ and b € Q). To
solve a linear program is to find a vector & € Q™ maximizing the objective function subject to the
given constraints. In vector notation, we maximize ¢- Z subject to AZ < 5, where A is the matrix
whose rows are the constraint vectors @ and the inequality is componentwise.

The decisional version of this problem is LP = {(¢,A,b,K) : 3 € Q" s.t. AT < b,¢- & > K}.
The ellipsoid and interior point algorithms show that LP € P; you may use this below.

1. Prove that LP is P-complete under logspace mapping reductions. (Remark: INTEGER PRO-
GRAMMING, the variant of LINEAR PROGRAMMING where all numbers in the problem are
integers and we solve for integer solutions, is actually NP-complete.)



2. Show that a language L has polynomial-sized circuits if and only if there is a sequence
of linear programs P, = (A,,b,) (with no objective function) with poly(n) variables and
poly(n) constraints and entries from {—1,0, 1} such that for every input w € {0,1}", w € L
if and only if P, has a feasible solution ¥ whose first n coordinates equal w. Thus another
approach to proving P # NP is to prove a superpolynomial lower bound on the size of linear
programs whose feasible solutions project to some NP language.

Problem 5. (FACTORING) The FACTORING problem is: given a number n, find its prime factor-
ization. There is no polynomial-time algorithm known for this problem; indeed, much of public-key
cryptography relies on its presumed hardness. In this problem, you will explore the complexity of
FACTORING. Throughout, you may use the fact that deciding primality is in P.

1. Show that FACTORING can be cast as an NP search problem (in the sense of Problem 3 on
Problem Set 0), and hence can be solved in polynomial time if P = NP.

2. Show that if FACTORING is NP-hard under Cook reductions, then NP = coNP.

3. (*) Give an explicit algorithm for FACTORING such that the running time of this algorithm
is polynomial if and only if FACTORING can be solved in polynomial time. (Hint: think
diagonalization.) Compare the asymptotic running time of your algorithm to the running
time of the fastest possible algorithm for FACTORING. Is your algorithm practical?



